Project

Back to overview

Characterizing and analyzing 3D temporal slope evolution

Applicant Jaboyedoff Michel
Number 144040
Funding scheme Project funding (Div. I-III)
Research institution Inst. de Géomatique & d'Analyse du Risque Fac. des Géosciences & de l'Environnement Université de Lausanne
Institution of higher education University of Lausanne - LA
Main discipline Geology
Start/End 01.12.2012 - 30.04.2014
Approved amount 207'552.00
Show all

All Disciplines (2)

Discipline
Geology
Geomorphology

Keywords (7)

Landslide; 3D Remote Sensing; Monitoring; New algorithms; 3D Deformation; Change Detection; LiDAR

Lay Summary (French)

Lead
Characterizing and analyzing 3D temporal slope evolution
Lay summary

The global aim of this project is to improve our understanding on the kinematics of active slope movements, either in space and time, through the development of new algorithms for the treatment of massive 3D datasets. Although the use of new remote sensing techniques, either terrestrial, aerial or satellite based, is shedding light into how landslides behave and evolve, still many questions need to be solved regarding the treatment of these datasets, more specifically LiDAR point clouds and its application to a better modelling and forecasting of landslides in 4D (X,Y,Z and Time).

Our research is focused in the development of new algorithms for the modelling and quantification of the geometrical variation of different failure mechanisms (e.g. toppling, falls, slides, etc) along time. The project is conceived through a threefold strategy: in a first step, we are simulating mass movements at analogue scale using a sandbox, in order to acquire high resolution 3D temporal data. Then, we are exploiting these datasets for the development of new algorithms aiming to better modelling and quantify the landslide geometrical variation along the different phases of the rupture. In the third and final step, we are applying these algorithms to the study of more complex landslides in well instrumented pilot study areas, aiming to a better modelling and understanding of the 3D evolution suffered by complex mass movements during the pre-failure and failure stages.

This project is conceived as the logical continuation of the one year FNS project 138015 “Understanding landslide precursory deformation from superficial 3D data”. The outputs of the project will improve future implementation of 3D remote sensing techniques in early warning systems, a great challenge in current risk management strategies.
Direct link to Lay Summary Last update: 15.03.2013

Lay Summary (English)

Lead
Characterizing and analyzing 3D temporal slope evolution
Lay summary

Although the use of new remote sensing techniques, either terrestrial, aerial or satellite based, is shedding light into how landslides behave and evolve, still many questions need to be solved regarding the treatment of these datasets, more specifically LiDAR point clouds and its application to a better modelling and forecasting of landslides in 4D (X,Y,Z and Time).

Our research is focused in the development of new algorithms for the modelling and quantification of the geometrical variation of different failure mechanisms (e.g. toppling, falls, slides, etc) along time. The project is conceived through a threefold strategy: in a first step, we are simulating mass movements at analogue scale using a sandbox, in order to acquire high resolution 3D temporal data. Then, we are exploiting these datasets for the development of new algorithms aiming to better modelling and quantify the landslide geometrical variation along the different phases of the rupture. In the third and final step, we are applying these algorithms to the study of more complex landslides in well instrumented pilot study areas, aiming to a better modelling and understanding of the 3D evolution suffered by complex mass movements during the pre-failure and failure stages.

This project is conceived as the logical continuation of the one year FNS project 138015 “Understanding landslide precursory deformation from superficial 3D data”. The outputs of the project will improve future implementation of 3D remote sensing techniques in early warning systems, a great challenge in current risk management strategies.

Direct link to Lay Summary Last update: 15.03.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Rock slope discontinuity extraction and stability analysis from 3D point clouds: application to an urban rock slope
Adrian Riquelme Antonio Abellán Roberto Tomás Michel Jaboyedoff (2014), Rock slope discontinuity extraction and stability analysis from 3D point clouds: application to an urban rock slope, in Vertical Geology Conference, Lausanne.
Rockfall detection from terrestrial LiDAR point clouds: A clustering approach using R
Tonini M, Abellan A (2014), Rockfall detection from terrestrial LiDAR point clouds: A clustering approach using R, in Journal of Spatial Information Science, 95-110.
Terrestrial laser scanning of rock slope instabilities
Abellán Antonio, Oppikofer Thierry H., Jaboyedoff Michel, Rosser Nicholas J., Lim Michael, Lato Matthew J. (2014), Terrestrial laser scanning of rock slope instabilities, in Earth Surface Processes and Landforms, 39(1), 80-97.
A new approach for semi-automatic rock mass joints recognition from 3D point clouds
Riquelme Adrián J., Abellán Antonio, Tomás Roberto, Jaboyedoff Michel (2013), A new approach for semi-automatic rock mass joints recognition from 3D point clouds, in Computers and Geosciences, 68, 38-52.
Spatio-temporal analysis of rockfall pre-failure deformation using Terrestrial LiDAR
Royán Manuel Jesús, Abellán Antonio, Jaboyedoff Michel, Vilaplana Joan Manuel, Calvet Jaume (2013), Spatio-temporal analysis of rockfall pre-failure deformation using Terrestrial LiDAR, in Landslides, 1-13.
Automatic rockfalls volume estimation based on Terrestrial Laser Scanning data
Carrea D. Abellán A. M.-H. Derron Jaboyedoff M., Automatic rockfalls volume estimation based on Terrestrial Laser Scanning data, in International Association Engineering Geology Conference, torino.
LiDAR Use for Mapping and Monitoring of Landslides
Jaboyedoff M. Abellan A. Derron M-H. Carrea D. Michoud C. and Mattasci B, LiDAR Use for Mapping and Monitoring of Landslides, in Taylor and Francis (ed.), Taylor and Francis, -.
Predicting rates of displacement in continuously-moving mass movements
Abellán A. Michoud C. Jaboyedoff M. Baillifard F. Demierre J. Carrea D. and M.H. Derron, Predicting rates of displacement in continuously-moving mass movements, in International Association Engineering Geology Conference, Torino.

Collaboration

Group / person Country
Types of collaboration
DURHAM University: Department of Geography Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
RISKNAT group: Faculty of Geology, University of Barcelona Spain (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
UPC: Technical University of Catalonia Spain (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
NGU: Geological Survey of Norway Norway (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
M. Kanevski group (ex-IGAR group Univ.Lausanne) Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Optech’s 7th International Terrestrial Laser Scanning User Meeting Talk given at a conference Ground-Based LiDAR Point Cloud Simulator: An Application to Assess 3D Deformation Algorithms on Unstable Slopes 12.06.2014 Rome, Italy Carrea Dario;
ISRM European Rock Mechanics Symposium (EUROCK 2014) Talk given at a conference Towards rockfall prediction: linking pre-failure deformation with precursory rockfall events 26.05.2014 vigo, Spain Abellan Antonio;
European Geosciences Union Poster Building a LiDAR point cloud simulator: Testing algorithms for high resolution topographic change 28.04.2014 vienne, Austria Jaboyedoff Michel; Abellan Antonio;
VIII Spanish symposium on landslides and slope stability Talk given at a conference The Vallcebre landslide: predicting landslide velocities from rainfall data (in spanish) 11.06.2013 Palma de Mallorca, Spain Abellan Antonio;
European Geosciences Union Poster Landslide velocity prediction using a rainfall to displacements transfer function 08.04.2013 vienne, Austria Jaboyedoff Michel; Abellan Antonio; Carrea Dario;
European Geosciences Union Talk given at a conference New techniques for characterizing 3D landslide slope evolution from LiDAR point cloud 08.04.2013 Vienne, Austria Jaboyedoff Michel; Carrea Dario; Abellan Antonio;
European Geosciences Union Talk given at a conference LiDAR point cloud comparison: evaluation of denoising techniques using 3D moving Windows 08.04.2013 vienne, Austria Carrea Dario; Abellan Antonio; Jaboyedoff Michel;
European Geosciences Union Talk given at a conference Monitoring rockfall failure deformation in an active quarry 08.04.2013 Vienne, Austria Abellan Antonio; Jaboyedoff Michel; Carrea Dario;


Self-organised

Title Date Place
Vertical Geology conference 05.02.2014 Lausanne, Switzerland

Communication with the public

Communication Title Media Place Year
New media (web, blogs, podcasts, news feeds etc.) website of the Risk Analysis group of the University of Lausanne Italian-speaking Switzerland Western Switzerland Rhaeto-Romanic Switzerland International German-speaking Switzerland 2013

Associated projects

Number Title Start Funding scheme
121360 Long-range terrestrial laser scanner for characterization and monitoring of natural hazards 01.09.2008 R'EQUIP
146426 High resolution vertical geology for rockfall hazard assessment and 3D geological mapping 01.06.2013 Project funding (Div. I-III)
127132 Rockfall sources: toward accurate frequency estimation and detection 01.06.2010 Project funding (Div. I-III)
138015 Understanding landslide precursory deformation from superficial 3D data 01.12.2011 Project funding (Div. I-III)

Abstract

Durant la dernière décennie, l'utilisation de nouvelles techniques de télédétection (terrestres, aériennes ou satellitaires) ont permis de mieux comprendre l’évolution des glissements de terrain. Néanmoins, beaucoup de questions restent en suspens en ce qui concerne le traitement de ces types de données, et, plus particulièrement, des nuages de points LiDAR et de leur utilisation pour une meilleure modélisation et prévision des glissements de terrain en 4D (X, Y, Z et temps).Notre recherche est orientée sur le développement de nouveaux algorithmes pour la modélisation de la déformation de différents types de glissements de terrain (rotationnels, translationnels, etc.) ainsi que pour la quantification des changements géomorphologiques comme les chutes des blocs en fonction du temps. Le projet est conçu en trois étapes majeures: dans un premier temps, nous simulons analogiquement des mouvements de masse à l'aide d'un bac à sable, afin d'acquérir des données 3D de haute résolution spatio-temporelle. Ensuite, nous exploitons ces ensembles de données pour le développement de nouveaux algorithmes visant à mieux modéliser et quantifier la déformation durant les différentes phases de rupture. Dans la troisième et dernière étape, nous appliquons ces algorithmes à l'étude de glissements de terrain plus complexes dans des zones d'études pilotes, dans le but de mieux comprendre l'évolution 3D des mouvements de versant au cours des différentes phases de rupture.Ce projet est conçu comme la suite logique du projet FNS 138015 "Understanding landslide precursory deformation from superficial 3D data ". Les résultats du projet permettront aussi d'améliorer l’intégration future des techniques de télédétection 3D dans des systèmes d'alerte, qui constituent un grand défi dans les stratégies actuelles de gestion des risques.
-