Project

Back to overview

The uptake of peroxynitric acid on ice surfaces: The role of grain boundaries and of dissociation

Applicant Bartels-Rausch Thorsten
Number 140400
Funding scheme Project funding (Div. I-III)
Research institution Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Climatology. Atmospherical Chemistry, Aeronomy
Start/End 01.06.2012 - 31.05.2013
Approved amount 56'562.00
Show all

All Disciplines (2)

Discipline
Climatology. Atmospherical Chemistry, Aeronomy
Physical Chemistry

Keywords (9)

laboratory study; dissociation of acids; grain boundaries; flow tube; heterogeneous chemistry; adsorption kinetics; snow-air partitioning; adsorption thermodynamics; nitrogen oxides

Lay Summary (German)

Lead
Lay summary

Schnee und Eis können durch Aufnahme oder Abgabe von Spurengasen die Luftqualität der Atmosphäre direkt beeinflussen. In diesem Projekt werden die molekularen Grundlagen, wie Spurengase mit Schnee oder Eis wechselwirken, genauer untersucht. 

Insbesondere die Frage ob Schnee und Eis auch als langzeit Reservoir für Spurengase dienen könnten steht im Mittelpunkt. Ein solches Reservoir könnten die Grenzflächen zwischen einzelnen Eiskristallen sein. 

Eine weitere offene Frage betrifft die Rolle der Dissoziation von Spurengasen an der Eisoberfläche. Mit einem Fluoreszenzspektrometer und oberflächenselektiven Farbstoffen ist es möglich zu bestimmen, zu welchem Anteil die jeweiligen Spezies an der Oberfläche dissoziieren.

Bedeutung: Das Projekt will zum einem dazu beitragen die Aufnahme von bisher wenig untersuchten atmosphärischen Spurengasen auf die Eisoberfläche zu beschreiben, um so die Computermodelle mit denen die Atmosphärenchemie simuliert wird zu verbessern. Die Rolle der Kristallgrenzflächen als Reservoir für Spurengase soll untersucht werden; ebenso soll das Verständnis des Aufnahmeprozesses durch Untersuchung der Säure-Base Eigenschaften des Schnees oder Eises vertieft werden.


Direct link to Lay Summary Last update: 21.02.2013

Responsible applicant and co-applicants

Employees

Name Institute

Publications

Publication
Diffusion of volatile organics through porous snow: impact of surface adsorption and grain boundaries
Bartels-Rausch Thorsten, Wren S N, Schreiber Sepp, Riche Fabienne, Schneebeli M., Ammann Markus (2013), Diffusion of volatile organics through porous snow: impact of surface adsorption and grain boundaries, in Atmospheric Chemistry and Physics, 13(14), 6727-6739.
Chemistry: Ten things we need to know about ice and snow
Bartels-Rausch Thorsten (2013), Chemistry: Ten things we need to know about ice and snow, in Nature, 494(7435), 27-29.
Adsorption of Acetic Acid on Ice Studied by Ambient-Pressure XPS and Partial-Electron-Yield NEXAFS Spectroscopy at 230--240 K
Krepelova Adela, Bartels-Rausch Thorsten, Brown Matthew A, Bluhm Hendrik, Ammann Markus (2012), Adsorption of Acetic Acid on Ice Studied by Ambient-Pressure XPS and Partial-Electron-Yield NEXAFS Spectroscopy at 230--240 K, in J. Phys. Chem. A, 117(2), 401-409.
Standard States and Thermochemical Kinetics in Heterogeneous Atmospheric Chemistry
Donaldson D James, Ammann Markus, Bartels-Rausch Thorsten, Pöschl Ulrich (2012), Standard States and Thermochemical Kinetics in Heterogeneous Atmospheric Chemistry, in J. Phys. Chem. A, 116(24), 6312.

Collaboration

Group / person Country
Types of collaboration
Martin Schneebeli, WSL-SLF Davos Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Jan Pettersson, Göteborg University Sweden (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Exchange of personnel

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
IGAC International Science Conference 2012 17.09.2012 Beijing, China


Self-organised

Title Date Place

Communication with the public

Communication Title Media Place Year
Media relations: print media, online media Wie funktioniert die Chemie im Schnee? NZZ German-speaking Switzerland 06.03.2013
New media (web, blogs, podcasts, news feeds etc.) Die grossen Unbekannten bei Eis und Schnee Webseiten des PSI German-speaking Switzerland Western Switzerland International 27.02.2012

Associated projects

Number Title Start Funding scheme
108219 Dynamics of snow metamorphism: observations of physical and chemical processes and microstructural multi-phase numerical simulation 01.11.2005 Project funding (Div. I-III)
121857 The uptake of peroxynitric acid on ice surfaces: The role of grain boundaries and of dissociation 01.06.2009 Project funding (Div. I-III)
121857 The uptake of peroxynitric acid on ice surfaces: The role of grain boundaries and of dissociation 01.06.2009 Project funding (Div. I-III)
149629 Surface Sensitive Investigations of the Interaction of Atmospheric Acidic Trace Gases with Ice Surfaces 01.03.2014 Project funding (Div. I-III)

Abstract

The presence of ice or snow can significantly alter the composition of the surrounding air either because of chemistry or because the ice or snow scavenges atmospheric trace gases and removes them from the gas-phase. In this project, we focus on the uptake of trace gases as loss process. For the first time the uptake of peroxynitric acid (HNO4) was characterized. HNO4 is an important atmospheric nitrogen oxide species. Its removal from the gas-phase directly effects the concentration of hydroxyl radicals and thus the oxidizing capacity of the atmosphere. There is a growing interest in HNO4 and its interaction with ice and snow in the atmospheric and cryospheric science communities. Only recently the first wintertime measurements of HNO4 in Antarctica were presented, indicating that loss of HNO4 to the surface snow is an important process. Our results will now enable modelers to look at the large-scale impact of HNO4 adsorption to surface snow.The uptake of trace gases to ice or snow is complex with different processes operating at specific time-scales each. To allow extrapolations of laboratory findings to environmental settings the individual processes need to be characterized, because time-scales in the environment and during the laboratory experiments might differ. In this project we focus on the role of grain boundaries on the uptake process. Grain boundaries have been proposed to act as reservoir to which trace gases can diffuse an in which they accumulate over longer timescales. But direct and sound experimental evidence is missing. The uptake measurements with focus on the role of grain boundaries required the development of a new experimental approach. This is the reason to kindly ask for extension of the project by one year. The goal of the third task of this project is to characterize the dissociation of acids on ice surfaces. Until now a long-term uptake has been most dominantly been found for highly acidic trace gases, but it is currently unclear weather their high solubility or acidity causes this. A new instrument has been successfully tested. While the task related to the characterization of HNO4 uptake to ice has been finished within the first two years of the preceding project, we would like to apply for funds for an additional year to complete the analysis of the acid dissociation data set and complete the grain boundaries experiments and their analysis.
-