Project

Back to overview

Improved wood materials for structures

English title Improved wood materials for structures
Applicant Burgert Ingo
Number 139986
Funding scheme NRP 66 Resource Wood
Research institution ETH Zurich Institute for Building Materials Wood Materials Science Lab
Institution of higher education ETH Zurich - ETHZ
Main discipline Material Sciences
Start/End 01.02.2012 - 31.12.2016
Approved amount 688'360.00
Show all

All Disciplines (2)

Discipline
Material Sciences
Civil Engineering

Keywords (6)

wood; dimensional stability; cell wall; engineered wood materials; modification; modelling

Lay Summary (German)

Lead
Holz und Holzwerkstoffe mit verbesserten Eigenschaftsprofilen für den Holzbau Holz und Holzwerkstoffe haben hervorragende Eigenschaften, sind aber nicht sehr zuverlässig. Dieses Projekt zielt auf eine Verbesserung von Holz und Holzwerkstoffen durch die Veränderung von Holzzellwänden mittels Polymerchemie und nanotechnologischer Verfahren.
Lay summary

Hintergrund
Holz bietet als Baustoff den Vorteil, dass es relativ wenig wiegt und leicht zu verarbeiten ist. Doch es quillt und schwindet, ist oftmals nur mässig dauerhaft und in jedem Fall brennbar. Um die Qualität der Holzprodukte zu verbessern, entwickeln die Forschenden in diesem Projekt neue Ansätze zur Etablierung von Polymeren in der Zellwand, insbesondere unter Einbeziehung von Materialoptimierungen in der Natur, die sich in die Technik übertragen lassen (Bionik). Dabei bedienen sie sich nanotechnologischer Verfahren, der Polymerchemie sowie skalenübergreifender Modellierung.

Ziel
Das Projekt zielt darauf, die Zuverlässigkeit von Holz und Holzwerkstoffen als Baustoffe zu erhöhen. Dabei versuchen die Forschenden, die Holzzellwände so zu verändern, dass diese weniger Wasser aufnehmen können. Das so behandelte Holz würde weniger quellen und schwinden und wäre auch dauerhafter.
Die Forschenden modellieren die Veränderungen von Zellwänden auf der Nano- und Mikroskala, um so die entscheidenden Parameter für die Eigenschaftsprofile zu bestimmen und einzelne Prozessschritte optimieren zu können.

Bedeutung
Die in diesem Projekt gewonnenen Erkenntnisse könnten es ermöglichen, Holz und Holzwerkstoffe zuverlässiger zu machen und deren Einsatzmöglichkeiten im Bauwesen zu erweitern. Auf diese Weise könnte Holz als nachwachsende Ressource insgesamt eine höhere wirtschaftliche Bedeutung erhalten.

Direct link to Lay Summary Last update: 03.04.2013

Lay Summary (French)

Lead
Profils de propriétés du bois améliorés pour les ouvrages en bois Si le bois et les matériaux à base de fibres de bois présentent d’excellentes propriétés, ils pèchent par un déficit de fiabilité. Ce projet cherche à améliorer le bois et les dérivés du bois en modifiant les parois des cellules et les surfaces des fibres grâce à la chimie des polymères et aux procédés nanotechnologiques.
Lay summary

Contexte
Le bois présente deux avantages en tant que matériau de construction: sa relative légèreté et son usinabilité. Mais, il gonfle et se rétracte, affiche une durabilité souvent modérée et une implacable inflammabilité. De nombreux matériaux à base de fibres de bois présentent un comportement de rupture satisfaisant. Pourtant, en raison d’une trop forte dispersion de leurs propriétés mécaniques, les fibres ne peuvent pas être employées en tant que composites performants.
Pour améliorer la qualité des produits en bois, les chercheurs de ce projet étudient les possibilités d’application technologique des optimisations des matériaux dans la nature (bionique). A ces fins, ils font appel aux procédés nanotechnologiques, à la chimie des polymères et à la modélisation multi-échelle.

But
L’objectif du projet consiste à accroître la fiabilité du bois comme matériau et d’améliorer les propriétés mécaniques des matériaux à base de fibres de bois. Les chercheurs essaient de modifier les parois des cellules afin qu’elles absorbent moins d’eau. Ainsi traité, le bois gonflerait et se rétracterait moins, et serait plus durable.
Dans le domaine des matériaux à base de fibres, une combinaison de fibres de bois et de fibres de carbone devrait aboutir à des matériaux composites présentant une rigidité élevée et une meilleure résistance à la rupture. Les chercheurs modèlent les modifications des parois de cellules et des surfaces des fibres à l’échelle nano- et micrométrique afin de déterminer les paramètres décisifs des profils de propriétés et optimiser diverses étapes du processus.

Portée
Les conclusions tirées de ce projet pourraient permettre de rendre le bois et les matériaux à base de fibres de bois plus fiables et d’élargir l’éventail de leur utilisation dans la construction. D’une manière générale, le bois comme ressource renouvelable pourrait gagner en importance économique.

Direct link to Lay Summary Last update: 03.04.2013

Lay Summary (English)

Lead
Improved wood materials for structures Wood and engineered wood products have excellent properties but are not very reliable. This project aims to improve wood by changing wood cell walls through polymer chemistry and nanotechnology procedures.
Lay summary

Background
The advantages of wood as a building material are its lightness and the ease with which it can be processed. That said, wood swells and shrinks, is often only moderately durable and always combustible. In order to improve the quality of wood products, researchers in this project are developing novel approaches to establish polymers in wood cell walls, in particular by studying how the optimisation of materials in nature could be transferred to the technological realm (bionics). To this end, they are applying nanotechnology procedures, polymer chemistry and scale-independent modelling.

Aim
The project is aimed at increasing the reliability of wood as a building material. In this context, the researchers are attempting to change the cell walls in a way that will reduce their capacity to admit water. Wood treated in this way would swell and shrink less and would be more durable in the long term.
The researchers will study changes to the cell wall at the nano and micro level with the help of models, the aim being to define decisive parameters for the property profiles and optimise individual process steps.

Significance
The insights gained in this project could help make wood and engineered wood products more reliable and more widely used in the building sector. Wood as a renewable resource could thus gain added economic significance.

Direct link to Lay Summary Last update: 03.04.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Atom transfer radical polymerization within the wood hierarchical structure: Towards a new class of hybrid functional materials derived from biopolymers
Cabane Etienne, Keplinger Tobias, Künniger Tina, Merk Vivian, Burgert Ingo (2016), Atom transfer radical polymerization within the wood hierarchical structure: Towards a new class of hybrid functional materials derived from biopolymers, in Scientific Reports, 6, 31287.
Holzbasierte Materialien - Forschungsansätze für die erweiterte Nutzung des Werkstoffs
Burgert Ingo, Merk Vivian, Keplinger Tobias (2016), Holzbasierte Materialien - Forschungsansätze für die erweiterte Nutzung des Werkstoffs, in Holztechnologie, 57, 38-43.
Smart hierarchical bio-based materials by formation of stimuli-responsive hydrogels inside the microporous structure of wood
Keplinger Tobias, Cabane Etienne, Berg John K., Segmehl Jana S., Bock Peter, Burgert Ingo (2016), Smart hierarchical bio-based materials by formation of stimuli-responsive hydrogels inside the microporous structure of wood, in Applied Materials Interfaces, 3, 1600233.
A versatile strategy for grafting polymers to wood cell walls
Keplinger Tobias, Cabane Etienne, Chanana Munish, Hass Philipp, Merk Vivian, Gierlinger Notburga, Burgert Ingo (2015), A versatile strategy for grafting polymers to wood cell walls, in Acta Biomaterialia, 11, 256-263.
A zoom into the nanoscale texture of secondary cell walls
Keplinger Tobias, Konnerth Johannes, Aguié-Béghin Véronique, Rüggeberg Markus, Gierlinger Notburga, Burgert Ingo (2014), A zoom into the nanoscale texture of secondary cell walls, in Plant Methods, 10(1), 1-7.
Fully biodegradable modification of wood for improvement of dimensional stability and water absorption properties by poly(epsilon-caprolactone) grafting into the cell walls
Ermeydan Mahmut A., Cabane Etienne, Hass Philipp, Koetz Joachim, Burgert Ingo (2014), Fully biodegradable modification of wood for improvement of dimensional stability and water absorption properties by poly(epsilon-caprolactone) grafting into the cell walls, in GREEN CHEMISTRY, 16(6), 3313-3321.
Improvement of wood material properties via in situ polymerization of styrene into tosylated cell walls
Ermeydan Mahmut A., Cabane Etienne, Gierlinger Notburga, Koetz Joachim, Burgert Ingo (2014), Improvement of wood material properties via in situ polymerization of styrene into tosylated cell walls, in RSC ADVANCES, 4(25), 12981-12988.
Renewable and Functional Wood Materials by Grafting Polymerization Within Cell Walls
Cabane Etienne, Keplinger Tobias, Merk Vivian, Hass Philipp, Burgert Ingo (2014), Renewable and Functional Wood Materials by Grafting Polymerization Within Cell Walls, in CHEMSUSCHEM, 7(4), 1020-1025.

Collaboration

Group / person Country
Types of collaboration
University of Cambridge Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
University of Madrid Spain (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Empa Dübendorf, Wood laboratory, Tanja Zimmermann Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
CNRS France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
ETH, Institut für Baustatik und Konstruktion Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
MPI-KG, Potsdam Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
- Exchange of personnel
ETH, Institut für Baustoffe Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Empa Dübendorf, Brandlabor Switzerland (Europe)
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
3rd Int Conf on Bioinspired and Biobased Chemistry and Materials Talk given at a conference Inorganic-Functionalized Wood Materials: Going Beyond the Intrinsic Properties 16.10.2016 Nice, France Goldhahn Christian;
Bio-inspired Materials Poster Functionalization Approaches for Secondary Wood Cell Walls to Develop New Functional Wood-Polymer Hybrid Materials; 22.02.2016 Potsdam, Germany Burgert Ingo; Keplinger Tobias;
MRS Fall Meeting Talk given at a conference Functionalization and Modification of Secondary Wood Cell Walls for the Development of Functional Wood-Polymer Hybrid Materials 30.11.2015 Boston, United States of America Keplinger Tobias;
SWST 2015 Internation Convention Renewable Materials and the Bio-Economy Talk given at a conference Versatile Strategies for the Modification and Functionalization of the Wood Structure 07.06.2015 Jackson, United States of America Keplinger Tobias;
International Symposium on Wood Science and Technology Talk given at a conference Versatile Strategies for grafting polymers to wood cell walls 15.03.2015 Tokio, Japan Keplinger Tobias;
Compo 2014 Talk given at a conference Wood Biomechanics & Biomimetics 28.04.2014 Weizmann Institue, Rehovot, Israel Burgert Ingo;
Measurement methods and Modelling approaches for predicting desirable future Wood properties (MeMoWood) Talk given at a conference Building a mesoscale model of the secondary wood cell wall 01.10.2013 Nancy, France Aigner Nikita;
The XIIIth Cell Wall Meeting Talk given at a conference Building a mesoscale model of the secondary wood cell wall 07.07.2013 Nantes, France Aigner Nikita;
COST Action FP1105 workshop Poster Characterisation of wood cell walls with sub-micron resolution 12.12.2012 Stockholm, Sweden Keplinger Tobias;


Self-organised

Title Date Place
CECAM Workshop on Aging of Engineering Materials: a Computational Approach to Durability and Sustainability 08.02.2012 ETH Zurich, Switzerland

Knowledge transfer events

Active participation

Title Type of contribution Date Place Persons involved
Nanocellulose: The next big thing? Or still a bit thin? Workshop 13.01.2016 Wicor Holding AG, Rapperswil, Switzerland Burgert Ingo;
2nd Biomimicry Europe Innovation and Finance Summit Talk 04.09.2014 Zürich, Switzerland Burgert Ingo;
6. Wädenswiler Chemietag: Neue Materialien aus Holz – nahe oder ferne Zukunft? Talk 26.06.2014 Wädenswil, Switzerland Burgert Ingo;


Self-organised

Title Date Place
Dialogplattform 3 Holzfunktionsmaterialien 11.03.2016 Zurich, Switzerland

Associated projects

Number Title Start Funding scheme
160041 Functionalized wood materials for smart filter technologies 01.10.2015 Project funding (Div. I-III)
184821 Hierarchical cellulose scaffolds for structural and functional gradient materials 01.05.2019 Project funding (Div. I-III)
150738 Engineering materials with structural and dynamical complexity 01.07.2014 SNSF Professorships

Abstract

Wood is not only the oldest utilized resource in human history but also nowadays one of the most trendsetting materials due to its excellent properties and eco-balance. However it demands further efforts to advance its performance in order to establish wood as a modern biomaterial with superior properties against alternative building materials. Intrinsic drawbacks such as low durability, shrinkage anisotropy, combustibility as well as natural variability limit the reliability of wood as a construction material. To overcome these limitations this project aims at improving wood cell walls by biomimetic approaches, nano(bio)technological techniques and modelling. In this vein wood with improved material performance should be made available for the utilization of wood as a building material and for interior works. The project aims at reducing the high shrinkage and the combustibility as well as increasing the low durability of wood by developing novel approaches to establish polymers in wood cell walls, in particular by transferring natural principles of heartwood formation. The challenge is to overcome the limited penetrability of the wood cell wall and develop impregnation routines that are relatively cheap and do not impair the mechanical properties of the wood material. The work will be complemented by modelling and numerical simulation activities. The aim is to develop nano-scale statistical models for the modified structures of the cell wall. Thereby it will be elucidated how nano-scale modifications change micro- and macromechanical properties, which is a prerequisite for designing advanced wood materials.
-