Project

Back to overview

Hot gas cleaning of woodgas for electricity/biofuels production

Applicant Biollaz Serge
Number 136890
Funding scheme NRP 66 Resource Wood
Research institution General Energy Research Department Paul Scherrer Institut (PSI)
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Chemical Engineering
Start/End 01.10.2012 - 30.06.2016
Approved amount 311'032.00
Show all

All Disciplines (2)

Discipline
Chemical Engineering
Mechanical Engineering

Keywords (9)

Biofuels; Combined Cooling, Heating & Power (CCHP); Hot gas cleaning; Combined Heat & Power (CHP); Fuel wood (Schwachholz); Urban waste wood (Altholz); Synthetic Natural Gas (SNG)

Lay Summary (German)

Lead
Heissgasreinigung für eine hocheffiziente und wirtschaftliche Holzenergienutzung Das Forschungsprojekt setzt sich mit der Heissgasreinigung auseinander. Mit Hilfe der Gasreinigung bei hohen Temperaturen werden Störstoffe aus der Holzvergasung abgebaut bzw. abgeschieden. Die Erkenntnisse aus den geplanten Experimenten sollen die energetische Nutzung von Holz jenseits der Verfeuerung fördern und die dazu nötigen Verfahrenstechnologien für die Praxis wirtschaftlich machen.
Lay summary

Hintergrund
Derzeit gibt es kein herkömmliches biologisches Verfahren, welches Holz direkt in andere Energieträger umwandeln kann. Hingegen eignen sich thermochemische Verfahren wie die Vergasung, um Holz mit einem sehr hohen Wirkungsgrad in ein brennbares Gas umzuwan-deln. Dabei entstehen Nebenprodukte (z. B. Teere), die die anschliessende Nutzung behindern können. Je nach Holzqualität enthält der Brennstoff Verunreinigungen (u. a. Schwefel, Chlor und Alkalien), für die es abhängig von der Nutzung des Gases (z. B. Strom- oder Treibstof-ferzeugung) mehr oder weniger strenge Grenzwerte gibt. Heute werden die Grenzwerte für die Verunreinigungen mit sogenannten Kaltgasreinigungsverfahren erreicht. Die Heissgasrei-nigung könnte diese jedoch künftig ersetzen und damit die Wirtschaftlichkeit deutlich verbessern.

Ziel
Das Projekt zielt darauf ab, die Heissgasreinigung für kommerzielle Anlagen zur Vergasung von Holz weiterzuentwickeln. Dafür bestimmen die Forschenden an verschiedenen Teststän-den die ein- und austretenden Stoffströme, wobei sie Temperatur, Druck, Gasflüsse und Gaszusammensetzung variieren. Der Schwerpunkt der Arbeiten ist die Untersuchung von Sorptionsmitteln, welche die Störstoffe Schwefel, Chlor und Alkalien aus dem Gas abschei-den. Die Ergebnisse sollen als Grundlage für entsprechende Computermodelle dienen, die die experimentellen Daten auf industrielle Anlagen hochskalieren und somit dort die Prozessop-timierung unterstützen.

Bedeutung
Die Ergebnisse des Projekts sollen dazu beitragen, dass die Heissgasreinigung industriell genutzt werden kann. Dank diesen Technologien können Wirkungsgrade erhöht und die Investitions- und Betriebskosten der Anlagen gesenkt werden. Dies ermöglicht eine verstärkte energetische Nutzung der Ressource Holz und die Bereitstellung von höherwertigen Energien für den Endverbraucher in Form von Strom (elektrischer Energie) und Treibstoffen.

Direct link to Lay Summary Last update: 25.01.2013

Lay Summary (French)

Lead
Epuration des gaz à chaud pour une exploitation efficace et rentable de l’énergie ligneuse Ce projet de recherche porte sur le procédé permettant de détruire ou d’éliminer les substances interférentes lors de la transformation du bois en gaz par épurement des gaz à hautes températures. Les conclusions tirées des expériences prévues visent à promouvoir la valorisation énergétique du bois au-delà de la combustion et à assurer la rentabilité des procédés nécessaires à cette fin.
Lay summary

Contexte
A l’heure actuelle, aucun procédé biologique traditionnel n’assure la transformation directe du bois en d’autres agents énergétiques. En revanche, les procédés thermochimiques tels que la gazéification transforment efficacement le bois en gaz combustible. Elle génère toutefois des sous-produits (par ex. des goudrons), susceptibles d’entraver l’usage ultérieur. Le combustible contient des impuretés (notamment du souffre, du chlore et des alcalis), à des teneurs variables en fonction de la qualité du bois et assujetties à des valeurs seuils plus ou moins strictes selon l’usage prévu du gaz (par ex. génération d’électricité ou carburant). Actuellement, l’épuration des gaz à froid permet de respecter ces impératifs, mais l’épuration à chaud pourrait remplacer ce procédé à l’avenir et en accroître considérablement la rentabilité.

But
Le projet vise à perfectionner les processus d’épuration des gaz à chaud dans la perspective d’installations commerciales de gazéification du bois. A cet effet, sur différents bancs d’essai, les chercheurs évaluent les flux entrants et sortants de substances, en faisant varier la température, la pression, les flux gazeux et la composition des gaz. Les travaux se focalisent sur l’étude des agents de sorption responsables de l’élimination des substances interférentes (soufre, chlore et alcalis). Les résultats serviront de base à des modèles informatiques qui projettent les données expérimentales à grande échelle dans les installations industrielles afin d’optimiser les processus.

Portée
Les résultats du projet contribuent à la mise en œuvre à l’échelle industrielle de l’épuration des gaz à chaud. Cette technologie permet d’accroître le degré d’efficacité et de réduire les frais d’investissement et d’exploitation des installations. Il en résulte une exploitation énergétique renforcée de la ressource bois et la mise à disposition d’énergies à valeur accrue.

Direct link to Lay Summary Last update: 25.01.2013

Lay Summary (English)

Lead
Hot gas cleaning for highly efficient and economical energy production from wood The research project examines hot gas cleaning. With the help of gas cleaning at high temperatures, impurities can be broken down or eliminated in wood gasification. The insights expected from the planned experiments are intended to promote the use of wood as a source of energy beyond combustion and to render the technologies needed for this more economical for practical application.
Lay summary

Background
There is currently no conventional procedure for transforming wood into other sources of energy. However, thermochemical procedures such as gasification are suitable for transform-ing wood into a combustible gas with high efficiency. This creates by-products (e.g. tars) that can hinder subsequent usage. Depending on the wood quality, the fuel contains impurities such as sulphur, chlorine and alkalis for which more or less strict thresholds are in place depending on how the gas is used (e.g. electricity or fuel generation). Today the thresholds for impurities are met with so-called cold gas cleaning procedures. However, hot gas cleaning could replace them in future, thereby significantly improving cost-effectiveness.

Aim
The project aims to further develop hot gas cleaning for commercial plants where wood is gasified. For this purpose, the researchers determine the incoming and outgoing material flows at different test facilities while varying the temperature, pressure and gas flows. The main focus of the work is on examining sorption agents which remove the impurities sulphur, chlorine and alkalis from the gas. The results should serve as a basis for computer models which upscale the experimental data for industrial plants and thereby help to optimise processes there.

Significance
The results of the project should contribute towards making hot gas cleaning suitable for industrial use. These technologies help to increase effectiveness and reduce the investment and operating costs of plants. This allows for a more intensive use of wood as an energy source and paves the way for providing high-quality energies to the end user in the form of electricity (electrical energy) and fuels.

Direct link to Lay Summary Last update: 25.01.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Emissions of Secondary Formed ZnO Nano-Objects from the Combustion of Impregnated Wood. An Online Size-Resolved Elemental Investigation
Foppiano Debora, Tarik Mohamed, Müller Gubler Elisabeth, Ludwig Christian (2018), Emissions of Secondary Formed ZnO Nano-Objects from the Combustion of Impregnated Wood. An Online Size-Resolved Elemental Investigation, in Environmental Science & Technology, 52(2), 895-903.
Adsorption of thiophene by activated carbon: A global sensitivity analysis
Edinger Philip, Grimekis Dimitrios, Panopoulos Kyriakos, Karellas Sotirios, Ludwig Christian (2017), Adsorption of thiophene by activated carbon: A global sensitivity analysis, in Journal of Environmental Chemical Engineering, 5(4), 4173-4184.
Online Detection of Selenium and Its Retention in Reducing Gasification Atmosphere
Edinger Philip, Tarik Mohamed, Hess Adrian, Testino Andrea, Ludwig Christian (2016), Online Detection of Selenium and Its Retention in Reducing Gasification Atmosphere, in Energy & Fuels, 30(2), 1237-1247.
On-line liquid quench sampling and UV–Vis spectroscopy for tar measurements in wood gasification process gases
Edinger Philip, Schneebeli J., Struis Rudolf P.W.J., Biollaz Serge M.A., Ludwig Christian (2016), On-line liquid quench sampling and UV–Vis spectroscopy for tar measurements in wood gasification process gases, in Fuel, 184, 59-68.

Collaboration

Group / person Country
Types of collaboration
EPF Lausanne Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Catalyst supplier (Industrie) Germany (Europe)
- Industry/business/other use-inspired collaboration
REVOGAS Italy (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
- Industry/business/other use-inspired collaboration
Karlsruhe Institut of Technology (KIT) Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
- Industry/business/other use-inspired collaboration

Scientific events



Self-organised

Title Date Place
Gas Analysis Workshop 2016 Amsterdam 10.06.2016 Amsterdam, Netherlands
Gas Analysis Workshop 2015 Vienna 05.06.2015 Vienna, Austria
Gas Analysis Workshop, Berlin April 2014 03.04.2014 Berlin, Germany

Knowledge transfer events

Associated projects

Number Title Start Funding scheme
156206 Development of a catalyst for methanation in the presence of sulphur to simplify the production of Synthetic Natural Gas from wood 01.09.2015 Project funding (Div. I-III)

Abstract

The conversion of wood to SNG and electricity has been investigated at PSI since more than ten years. The SNG from wood process was demonstrated successfully in 2009 in the 1 MWSNG pilot scale plant in Güssing, Austria. The conversion of wood gasification derived producer gas by a Solid Oxide Fuel Cell (SOFC) has been shown in 2009 within the European Union Project Biocellus. The challenge lies in the optimal combination of the different process steps in the chain, i.e. gasification, cleaning of the producer gas from the gasifier and final conversion in a synthesis step (fluidised bed methanation) to convert the producer gas to methane-rich gas and the gas-upgrading to yield pipeline-ready SNG (>96% CH4) or to electricity in the SOFC, respectively. There are several directions for further improvement of the process chain with respect to cold gas efficiency, investment costs, operation costs (especially energy consumption) and technical availability. One of these is the implementation of hot gas cleaning which allows omitting scrubbing units and heat exchangers and saves significant amounts of steam.The goal in this project is to gain competence and understanding in the hot cleaning of contaminant-laden fuel gas to protect downstream catalysts. The gained insights will be of generic nature, applicable to a range of processes that convert wood to obtain energy carriers with highest efficiency.Within the subtask “Filtration and reformer”, method development will be in the focus of the first phase. This relates to the development of a sampling system for particle loaded gas at 850°C and for proper balancing of sulphur in hot gas filters. With the impurity concentration in real systems known, systematic experiments will be carried out varying pressures, temperatures, steam content, gas matrix and concentrations of impurities. These data should allow the derivation of applied kinetics for tar conversion which then enables modelling of reformer.Within the subtask “Adsorption of inorganic impurities (S, Cl, K, P, Cd, As, Zn, Pb, etc.)”, the method development for proper sampling for GC-ICP/MS measurements and fine-tuning of the GC-ICP/MS method is the starting activity. Further, the PhD student will introduce himself to the use of the surface Ionisation detector (SID) which allows the measurement of even small quantities of alkali metals in a gas stream. Both methods shall apply in the above mentioned campagins at real gasifiers.
-