Project

Back to overview

Distributed production of ultra-pure hydrogen from woody biomass

English title Distributed production of ultra-pure hydrogen from woody biomass
Applicant Müller Christoph
Number 136707
Funding scheme NRP 66 Resource Wood
Research institution Institut für Energietechnik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Chemical Engineering
Start/End 01.02.2012 - 31.05.2017
Approved amount 463'219.00
Show all

Keywords (4)

chemical looping combustion; wood; hydrogen; biomass

Lay Summary (German)

Lead
Herstellung von hochreinem Wasserstoff aus Holz Im Mittelpunkt dieses Projekts steht ein neuartiger Prozess für die Produktion von hochreinem Wasserstoff aus Holz. Der Prozess basiert auf den Redoxreaktionen von Eisenoxid und könnte dazu beitragen, die Abhängigkeit des Schweizer Verkehrs- und Elektrizitätssektors von kohlenstoffbasierten Energieträgern zu verringern.
Lay summary

Hintergrund
Wasserstoff als Energieträger könnte die Auswirkungen des Klimawandels abschwächen. Voraussetzung dafür ist, Wasserstoff effizient und nachhaltig, d. h. aus nachwachsenden Ressourcen wie Holz, zu erzeugen. Die Verwendung des Wasserstoffs in Niedertemperatur-Brennstoffzellen von Fahrzeugen setzt zusätzlich eine hohe Reinheit des Gases voraus. Die vorherrschende Methode zur Erzeugung von Wasserstoff ist gegenwärtig die Dampfreformie-rung von Methan, ein Prozess, bei dem Kohlendioxid, aber auch Kohlenmonoxid entstehen. Um den Kohlenmonoxidgehalt auf Toleranzwerte zu verringern, muss der so gewonnene Wasserstoff kostspieligen Gaswäschen unterzogen werden.

Ziel
Das Hauptziel des vorliegenden Forschungsprojekts ist die Entwicklung von neuartigen, eisenbasierten Redox-Materialien mit folgenden Eigenschaften: 1) hoher Anteil aktiven Materials, 2) hohe Reaktionsgeschwindigkeiten, 3) Resistenz gegen Abrieb, 4) die Fähigkeit Teere zu cracken (d. h. in Kohlenwasserstoffe kürzerer Kettenlänge zu spalten) und 5) Resistenz gegenüber Schwefelwasserstoff und Komponenten der Holzasche. Für die Herstel-lung derartiger Materialien setzen die Forschenden die Sol-Gel-Methode ein, welche die Synthese von nano-strukturierten Materialien erlaubt. Ein wichtiger Aspekt dieses Projekts ist zudem, dass die Forschenden einen Holzvergaser direkt mit einem Festbettreaktor koppeln, der das eisenbasierte Redox-Material enthält. Hierdurch lässt sich die Umsetzbarkeit des neuen Prozesses in die industrielle Praxis demonstrieren.

Bedeutung
Die Erkenntnisse aus diesem Projekt könnten dazu beitragen, zukünftig die Produktion von Wasserstoff nachhaltiger und effizienter zu gestalten und die Abhängigkeit des Verkehrs- und Elektrizitätssektors in der Schweiz von kohlenstoffbasierten Energieträgern zu verringern.

Direct link to Lay Summary Last update: 25.01.2013

Lay Summary (French)

Lead
Génération d’hydrogène de grande pureté à partir de bois Un processus innovant de génération d’hydrogène de grande pureté à partir de bois est au centre de ce projet. Basé sur les réactions d’oxydo-réduction de l’oxyde de fer, ce processus pourrait contribuer à réduire la dépendance par rapport aux agents énergétiques à base de carbone dans les secteurs suisses des transports et de l’électricité.
Lay summary

Contexte
L’utilisation de l’hydrogène comme agent énergétique pourrait atténuer les effets des changements climatiques, à condition toutefois que l’hydrogène soit généré de manière efficace et durable. Autrement dit, à partir de ressources renouvelables, telles que le bois. L’utilisation de l’hydrogène dans les piles à combustible à basse température pour véhicules pose la condition supplémentaire d’une grande pureté du gaz. La méthode de fabrication de l'hydrogène la plus répandue actuellement est le reformage du méthane à la vapeur, processus qui génère du dioxyde de carbone, mais aussi du monoxyde de carbone. Pour ramener la teneur en monoxyde de carbone aux valeurs de tolérance, l’hydrogène ainsi obtenu doit être soumis à un onéreux lavage de gaz.

But
L’objectif premier du présent projet de recherche est de développer des matériaux rédox d’un genre nouveau à base de fer et présentant les propriétés suivantes: 1) teneur élevée en matériau actif, 2) vitesses de réaction élevées, 3) résistance à l’abrasion, 4) capacité de craquage des goudrons (c.-à-d. de les diviser en hydrocarbures de chaînes plus courtes), 5) résistance au sulfure d’hydrogène et aux composants de la cendre de bois. Pour la production de tels matériaux, les chercheurs recourent à la méthode sol-gel, qui permet la synthèse de matériaux nanostructurés. Aspect important de ce projet, les chercheurs accouplent directement un carburateur de bois à un réacteur à lit fixe contenant le matériau rédox à base de fer. Ceci démontre que le nouveau processus est applicable dans la pratique industrielle.

Portée
Les conclusions tirées de ce projet pourraient contribuer à rendre la production d’hydrogène plus durable et plus efficace à l’avenir, et à réduire la dépendance par rapport aux agents énergétiques à base de carbone fossile dans les secteurs suisses des transports et de l’électricité.

Direct link to Lay Summary Last update: 25.01.2013

Lay Summary (English)

Lead
Production of ultra-pure hydrogen from wood This project focuses on an innovative process for the production of ultra-pure hydrogen from wood. The process is based on the redox reactions of iron oxide and could contrib-ute towards reducing the Swiss transport and electricity sector's dependence on carbon-based sources of energy.
Lay summary

Background
Hydrogen as a source of energy could mitigate the effects of climate change. However, this can only be achieved if hydrogen is produced efficiently and sustainably, i.e. from renewable resources such as wood. Furthermore, hydrogen can only be used in low-temperature fuel cells if it is highly pure. The currently prevailing method of hydrogen production involves the steam reforming of methane, a process that generates carbon dioxide and carbon monoxide. The hydrogen thereby gained must be subjected to costly gas purification processes in order to reduce the carbon monoxide level to the relevant standard levels.

Aim
The main goal of this research project is to develop innovative, iron-based redox materials with the following properties: 1) high share of active material, 2) high reaction speed, 3) resistance to abrasion, 4) the capacity to crack tars (i.e. to split them into hydrocarbons with shorter chains) and 5) resistance to hydrogen sulphide and components of wood ash. The researchers will produce such materials using the Sol-Gel method, which allows for the synthesis of nano-structured materials. Another important aspect of this project involves coupling a wood gasifier directly to a fixed-bed reactor containing the redox material. This will help to demonstrate that the new process can be implemented in the industrial realm.

Significance
The insights gained in the course of this project could contribute towards a more sustainable and efficient production of hydrogen and a reduction of the Swiss transport and electricity sector's dependence on carbon-based sources of energy in the future.

Direct link to Lay Summary Last update: 25.01.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Development of MgAl2O4-stabilized, Cu-doped, Fe2O3-based oxygen carriers for thermochemical water-splitting
Imtiaz Q., Yuezbasi N. S., Abdala P. M., Kierzkowska A. M., van Beek W., Broda M., Mueller C. R. (2016), Development of MgAl2O4-stabilized, Cu-doped, Fe2O3-based oxygen carriers for thermochemical water-splitting, in JOURNAL OF MATERIALS CHEMISTRY A, 4(1), 113-123.
Fe2O3-based oxygen carriers for thermochemical water-splitting
Imtiaz Q., Yüzbasi N.S., Abdala P., Kierzkowska A.M., van Beek W., Broda M., Müller C.R. (2016), Fe2O3-based oxygen carriers for thermochemical water-splitting, in J. Mat. Chem. A, 4, 113-123.
ZrO2-Supported Fe2O3 for Chemical-Looping-Based Hydrogen Production: Effect of pH on Its Structure and Performance As Probed by X-ray Absorption Spectroscopy and Electrical Conductivity Measurements
Yuzbasi N. Sena, Kierzkowska Anieszka M., Imtiaz Qasim, Abdala Paula M., Kurlov Alexey, Rupp Jennifer L. M., Muller Christoph R. (2016), ZrO2-Supported Fe2O3 for Chemical-Looping-Based Hydrogen Production: Effect of pH on Its Structure and Performance As Probed by X-ray Absorption Spectroscopy and Electrical Conductivity Measurements, in JOURNAL OF PHYSICAL CHEMISTRY C, 120(34), 18977-18985.
Development of a highly efficient oxygen storage material with intrinsic coke resistance for chemical looping combustion based CO2 cap-ture architectures: CuO-CeO2-x
Imtiaz Q., Kurlov A., Rupp J.L.M., Müller C.R. (2015), Development of a highly efficient oxygen storage material with intrinsic coke resistance for chemical looping combustion based CO2 cap-ture architectures: CuO-CeO2-x, in ChemSusChem, 8, 2055-2065.
Highly Efficient Oxygen-Storage Material with Intrinsic Coke Resistance for Chemical Looping Combustion-Based CO2 Capture
Imtiaz Qasim, Kurlov Alexey, Rupp Jennifer Lilia Marguerite, Mueller Christoph Ruediger (2015), Highly Efficient Oxygen-Storage Material with Intrinsic Coke Resistance for Chemical Looping Combustion-Based CO2 Capture, in CHEMSUSCHEM, 8(12), 2055-2065.
Structure-property relationship of co-precipitated Cu-rich, Al2O3- or MgAl2O4-stabilized oxygen carriers for chemical looping with oxygen uncoupling (CLOU)
Imtiaz Qasim, Broda Marcin, Mueller Christoph R. (2014), Structure-property relationship of co-precipitated Cu-rich, Al2O3- or MgAl2O4-stabilized oxygen carriers for chemical looping with oxygen uncoupling (CLOU), in APPLIED ENERGY, 119, 557-565.
Synthesis and redox pathways of MgAl2O4-stabilized, Fe-Cu-based oxygen carriers for thermochemical water splitting
Imtiaz Qasim, Yüzbasi Nur Sena, Kierzkowska Agnieszka, Abdala Paula, van Beek Wouter, Broda Marcin, Müller Christoph (2014), Synthesis and redox pathways of MgAl2O4-stabilized, Fe-Cu-based oxygen carriers for thermochemical water splitting, in 248th ACS National Meeting, San Fransisco, USANA, NA.
Synthesis and redox pathways of MgAl2O4-stabilized, Fe-Cu-based oxygen carriers for chemical looping water splitting
Qasim Imtiaz, Nur Sena Yüzbasi, Marcin Broda, Agnieszka Kierzkowska, Paula Abdala, Wouter van Beek, Christoph Müller (2013), Synthesis and redox pathways of MgAl2O4-stabilized, Fe-Cu-based oxygen carriers for chemical looping water splitting, in AIChE 2013 Annual Meeting, San Fransissco, USANA, NA.
Development of bimetallic oxygen carrier containing Fe and Cu for high syngas conversion using a modified chemical looping combustion process
Imtiaz Qasim, Yüzbasi Sena, Kierzkowska Agnieszka, Müller Christoph (2012), Development of bimetallic oxygen carrier containing Fe and Cu for high syngas conversion using a modified chemical looping combustion process, in International Conference on Chemical Looping, DarmstadtNA, NA.

Associated projects

Number Title Start Funding scheme
144986 Rational design of novel materials for CO2 capture: synthesis, structure and performance 01.12.2012 R'EQUIP

Abstract

The use of hydrogen as a clean energy carrier is seen as one way of mitigating climate change arising from the emission of anthropogenic CO2 into the atmosphere. However, for hydrogen to become a major energy carrier, it must be produced in an efficient and sustainable manner, e.g. from renewable resources, such as woody biomass. Additionally, when hydrogen is to be used in certain fuels cells (polymeric electrolyte membrane, PEM, fuel cells) it must be of high purity. At present, the predominant method of producing hydrogen is via steam reforming of methane, resulting in the production and release of CO2. Hydrogen produced via steam reforming requires expensive gas clean-up to reduce the CO content to acceptable levels for PEM fuel cells (below < 50 ppm CO). Currently, hydrogen is typically produced in large refineries with capacities of >15 kte/y of hydrogen. The local, small-scale production of very pure hydrogen is currently not economical using traditional plants based on the steam reforming of methane. Thus, a process which would enable the efficient production of high-purity hydrogen from biomass at a small, distributed scale would be highly desirable to avoid transportation of biomass over large distances. Due to the dominance of the steam reforming process, research into other cycles has been slow. However, owing to the recent concern about climate change, novel cycles such as a modified chemical looping process using the transitions of iron-oxides, have been proposed recently in the literature [1,2]. The chemistry of the proposed process involves the following stages: (I) Gasification of woody biomass to obtain a syngas containing mostly CO and H2, together with some CO2, some higher hydrocarbons, sulphurous and alkali compounds, tarry substances and H2O. (II) Reduction of iron oxide, Fe2O3, to Fe0.947O or Fe using the syngas derived from the gasification of biomass. (III) Generation of ultra-pure hydrogen from either Fe or Fe0.947O by oxidizing it to Fe3O4 with steam and (IV) the return of Fe3O4 to its original form, Fe2O3, by oxidation in air.A draw-back of experimental research into CLC (both conventional and the modified process to produce hydrogen), has been that most studies have used clean fuels, i.e. impurities that are typically encountered in the gasification gas of solid fuels, such as woody biomass, have been neglected. However, it is well known that these impurities, e.g. light hydrocarbons, NH3 or tars, can have highly detrimental effects due to poisoning of actives sites or carbon deposition. Considering the complexity of the fuel wood, the development of novel, multi-functional Fe-based redox materials is pivotal to make the modified CLC process an attractive option for the production of hydrogen from biomass. The development of synthetic oxygen carriers has so far mainly involved “simple” preparation techniques, such as mechanical mixing, which do not allow key structural properties of the final product, such as pore size distribution, surface area or cluster size of catalytic material, to be tailored easily.Thus, the main objective of the present proposal is to develop novel, synthetic Fe-based redox particles which possess (i) a high loading of active material, (ii) fast reaction kinetics, (iii) resistance towards attrition (iv) the capability to crack tars and (v) resistance towards H2S and biomass ash. The sol-gel technique shall be used to synthesize these particles. The development of these oxygen carriers shall be aided by an improved understanding of the macroscopic and microscopic structural changes occurring during repeated cycles of reduction and oxidation. These structural changes will be monitored using advanced measurement techniques such as FIB-SEM. These detailed measurements will also be used to elucidate the influence of various parameters of the wet-chemistry preparation techniques, e.g. pH, on the structural properties, such as surface area and pore size distribution. Consequently, based on a detailed, fundamental understanding of the preparation method and the underlying structural changes occurring during reaction, it is envisaged that this research will enable the rational design of multi-functional and highly efficient Fe-based oxygen carriers. Important facets of the project are (i) the coupling of a real gasifier with a packed bed containing the newly developed Fe-based redox particles and (ii) the fluid- and thermo-dynamical modelling of the proposed process. The successful completion of this project would be an important step towards the development of a novel process for the sustainable and efficient production of H2 from woody biomass. We are convinced that such a process could, in future, substantially contribute to the de-carbonization of both the transportation and electricity sectors in Switzerland. It is envisaged that the H2 produced will be of high purity and, thus, suitable for direct use in a PEM fuel cell without substantial gas clean-up.
-