Project

Back to overview

The uptake of peroxynitric acid on ice surfaces: The role of grain boundaries and of dissociation

Applicant Bartels-Rausch Thorsten
Number 121857
Funding scheme Project funding (Div. I-III)
Research institution Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Climatology. Atmospherical Chemistry, Aeronomy
Start/End 01.06.2009 - 31.05.2012
Approved amount 226'475.00
Show all

All Disciplines (2)

Discipline
Climatology. Atmospherical Chemistry, Aeronomy
Physical Chemistry

Keywords (8)

atmospheric chemistry; snow; cryosphere; adsorption; uptake; trace gases; climate change; air quality

Lay Summary (German)

Lead
Lay summary

Schnee und Eis können durch Aufnahme oder Abgabe von Spurengasen die Luftqualität der Atmosphäre direkt beeinflussen. In dem Projekt werden die molekularen Grundlagen, wie Spurengase mit Schnee oder Eis wechselwirken, genauer untersucht. Der Fokus liegt dabei auf Spurengasen mit Säure-Base Eigenschaften. 

Hintergrund:Stickoxide spielen eine wichtige Rolle in der Atmosphäre, da diese direkten Einfluss auf das Ozon- (O3) und Hydroxylradikalbudget (HOx) und somit auf die Luftqualität haben. Aus Labor- und Feldstudien ist bekannt, dass einige Stickoxide sehr effektiv von Schnee- und Eisoberflächen aufgenommen und so aus der Luft entfernt werden können. Dieser Prozess kann also die Qualität der Luft, die sich in Kontakt mit Schnee oder Eis befindet, beeinflussen.Weniger untersucht sind bisher die molekularen Grundlagen dieser Aufnahme von Spurengasen. Eine offene Frage etwa betrifft die Rolle der Dissoziation von Spurengasen an der Eisoberfläche. Selbst für die eigentlich gut untersuchte Stickoxide ist der Anteil der dissoziierten Moleküle nach der Aufnahme an Eis oder Schnee bei in der Umwelt relevanten Temperaturen wenig bekannt. 

Ziel:Das Ziel des Projektes ist das Verständnis der Aufnahme von Spurengasen aus der Atmosphäre auf Schnee oder Eisoberflächen zu vertiefen. Insbesondere interessiert uns ob und zu welchem Anteil Säuren nach der Aufnahme auf der Eisoberfläche dissoziieren. Zur Durchführung dieses Projektes werden wir radioaktiv markierte Spurengase verwenden, um deren Wechselwirkung mit Eis oder Schneeproben direkt beobachten zu können. Ein Fluoreszenzspektrometer wird es erlauben die Dissoziation an der Oberfläche zu verfolgen. 

Bedeutung:Das Projekt will zum einem dazu beitragen die Aufnahme von bisher wenig untersuchten Stickoxiden auf die Eisoberfläche zu beschreiben, um so die Computermodelle mit denen die Atmosphärenchemie simuliert wird zu verbessern. Die Untersuchung der Säure-Base Eigenschaften des Schnees oder Eises soll das grundsätzliche Verständnis des Aufnahmeprozesses vertiefen.

Direct link to Lay Summary Last update: 21.02.2013

Responsible applicant and co-applicants

Employees

Name Institute

Publications

Publication
Diffusion of volatile organics through porous snow: impact of surface adsorption and grain boundaries
Bartels-Rausch Thorsten, Wren S N, Schreiber Sepp, Riche Fabienne, Schneebeli M., Ammann Markus (2013), Diffusion of volatile organics through porous snow: impact of surface adsorption and grain boundaries, in Atmospheric Chemistry and Physics, 13(14), 6727-6739.
Adsorption of Acetic Acid on Ice Studied by Ambient-Pressure XPS and Partial-Electron-Yield NEXAFS Spectroscopy at 230–240 K
Krepelova Adela, Bartels-Rausch Thorsten, Brown Matthew A, Bluhm Hendrik, Ammann Markus (2012), Adsorption of Acetic Acid on Ice Studied by Ambient-Pressure XPS and Partial-Electron-Yield NEXAFS Spectroscopy at 230–240 K, in Journal of Physical Chemistry A, 117(2), 401-409.
Ice structures, patterns, and processes: A view across the icefields
Bartels-Rausch T, Bergeron V, Cartwright JHE, Escribano R, Finney JL, Grothe H, Gutierrez PJ, Haapala J, Kuhs WF, Pettersson JBC, Price SD, Sainz-Diaz CI, Stokes DJ, Strazzulla G, Thomson ES, Trinks H, Uras-Aytemiz N (2012), Ice structures, patterns, and processes: A view across the icefields, in REVIEWS OF MODERN PHYSICS, 84(2), 885-944.
Organics in environmental ices: sources, chemistry, and impacts
McNeill V Faye, Grannas A M, Abbatt Jonathan P D, Ammann Markus, Ariya Parisa A, Bartels-Rausch Thorsten, Domine Florent, Donaldson D James, Guzman M I, Heger D, Kahan Tara F, Klán P, Masclin S, Toubin C, Voisin D (2012), Organics in environmental ices: sources, chemistry, and impacts, in Atmospheric Chemistry and Physics, 12(20), 9653-9678.
Standard States and Thermochemical Kinetics in Heterogeneous Atmospheric Chemistry
Donaldson D James, Ammann Markus, Bartels-Rausch Thorsten, Pöschl Ulrich (2012), Standard States and Thermochemical Kinetics in Heterogeneous Atmospheric Chemistry, in The Journal of Physical Chemistry A, 116(24), 6312-6316.
The adsorption of peroxynitric acid on ice between 230 K and 253 K
Ulrich T, Ammann M, Leutwyler S, Bartels-Rausch T (2012), The adsorption of peroxynitric acid on ice between 230 K and 253 K, in ATMOSPHERIC CHEMISTRY AND PHYSICS, 12(4), 1833-1845.
A novel synthesis of the N-13 labeled atmospheric trace gas peroxynitric acid
Bartels-Rausch T, Ulrich T, Huthwelker T, Ammann M (2011), A novel synthesis of the N-13 labeled atmospheric trace gas peroxynitric acid, in RADIOCHIMICA ACTA, 99(5), 285-292.
Emerging Areas in Atmospheric Photochemistry
George Christian, D'Anna Barbara, Herrmann Hartmut, Weller Christian, Vaida Veronica, Donaldson D James, Bartels-Rausch Thorsten, Ammann Markus (2011), Emerging Areas in Atmospheric Photochemistry, in V. Faye McNeill and Parisa A. Ariya (ed.), Springer , Berlin Heidelberg, 1-54.

Collaboration

Group / person Country
Types of collaboration
Universität Bern Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
WSL - SLF Davos Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
University of Toronto Canada (North America)
- Exchange of personnel

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
European Geosciences Union General Assembly Poster The role of grain boundaries on the uptake of H2O2 22.04.2012 Wien, Austria Bartels-Rausch Thorsten; Ulrich Thomas;
International Polar Year 2012 Conference Montreal Poster Loss Processes of Peroxynitric Acid: Quantifying the Adsorption to Ice and Snow 22.04.2012 Montreal, Canada, Canada Ulrich Thomas;
European Geoscience Union General Assembly Poster The adsorption of HO2NO2 on ice 03.04.2011 Wien, Austria Ulrich Thomas; Bartels-Rausch Thorsten;
International Polar Year - Oslo Science Conference Poster The adsorption of HO2NO2 on ice 08.06.2010 Oslo, Norway, Norway Ulrich Thomas; Bartels-Rausch Thorsten;


Self-organised

Title Date Place
Third workshop on Air-Ice Chemical Interactions (AICI) 06.06.2011 New-York, United States of America

Communication with the public

Communication Title Media Place Year
Media relations: print media, online media Wie funktioniert die Chemie im Schnee NZZ German-speaking Switzerland International 2013

Awards

Title Year
Aufnahme in den Lenkungsausschusses des Air Ice Chemical Interaction (AICI) 2010

Associated projects

Number Title Start Funding scheme
139139 Near ambient pressure photoelectron spectroscopy for environmental and catalysis research 01.12.2011 R'EQUIP
125179 Structure-chemistry interaction during snow metamorphism 01.05.2009 Project funding (Div. I-III)
178962 Interfacial Chemistry of Ice: Photolysis and Acid-Base Equilibria in the QLL and Brine 01.08.2018 Project funding (Div. I-III)
140400 The uptake of peroxynitric acid on ice surfaces: The role of grain boundaries and of dissociation 01.06.2012 Project funding (Div. I-III)
140400 The uptake of peroxynitric acid on ice surfaces: The role of grain boundaries and of dissociation 01.06.2012 Project funding (Div. I-III)
140540 Structure-chemistry interaction during snow metamorphism 01.05.2012 Project funding (Div. I-III)
149629 Surface Sensitive Investigations of the Interaction of Atmospheric Acidic Trace Gases with Ice Surfaces 01.03.2014 Project funding (Div. I-III)
108219 Dynamics of snow metamorphism: observations of physical and chemical processes and microstructural multi-phase numerical simulation 01.11.2005 Project funding (Div. I-III)

Abstract

The interaction of nitrogen oxides with ice surfaces is of ongoing interest in the atmospheric science community. Uptake of HNO3 to cirrus clouds, for example, has been shown to be an important loss process in the upper troposphere. At the Earth’s surface it has been observed that the surface snow can act as source of HNO2 in some locations and at during certain times and as sink of HNO2 at other locations and times. This active role of the snow and of the ice phase in atmospheric chemistry is of importance, because the various nitrogen oxide species are interconvertible: The loss of one nitrogen oxide species, will affect the production of other species. As the nitrogen oxide chemistry is directly linked to the HOx and O3 budget, this might impact the oxidative capacity of the atmosphere. However, open questions remain as, for example, the interaction of most nitrogen oxides species with ice surfaces has not been so well characterized as has been done for HNO3 and HNO2 in the last decades. Among these species, HNO4 has recently been suggested to contribute significantly to the loss of nitrogen oxides from the gas phase through uptake to ice in the upper troposphere as well as in the Polar boundary layer. Yet, final conclusions on the importance of this loss pathway are currently not possible due to a lack of sufficient data describing the HNO4 ice interaction. More generally, the nature of the uptake process of acidic gases to ice surfaces is not fully understood. One open question concerns the origin of the long-term, diffusion-like uptake observed in laboratory experiments for some acidic gases. It has been suggested that this tailing is connected to the presence of grain boundaries, but experimental evidence is missing. As a significant fraction of an acidic gas can be taken up via this diffusive process, better knowledge of this process is of importance to describe the uptake of acidic gases to ice or snow in the environment. One approach to improve our understanding of the impact of ice morphology on the uptake process is to use ice samples where the number of individual ice grains is well characterized. A further aim should be to use single crystalline ice samples to exclude the diffusion into grain boundaries.Another aspect of interest is the role of dissociation of acids on the uptake process and the protonation equilibrium of acids on the ice surface. Even for well-characterized nitrogen oxides, such as HNO3, the fraction of dissociated acid upon adsorption still needs to be determined at temperatures relevant to the environment. Connected to this issue is the question of acidity of the ice surface and the nature of the protonation equilibrium at the ice surface. Molecular dynamics simulations and ab initio calculations point to a more acidic surface of water and ice compared to the bulk, while experiments with macroscopic resolution suggest a less acidic surface. This controversy can currently not be solved. More experiments on this issue are needed.In this project, we plan to study the interaction of HNO4 with ice surfaces. First, we will focus on the reversible adsorption using well-established methods such as a coated wall flow tube and a packed bed flow tube, both at atmospheric pressure. Full adsorption isotherms, i.e. the temperature and partial pressure dependence will be obtained. The packed bed flow tube experiments will already give indication of long-term, diffusion-like uptake, which will be analyzed using existing 2-D models. In these experiments, the uptake will mainly be derived by analysis of the gas phase. Additionally, irreversible uptake to the ice phase will be analyzed using ion chromatography. Next, we aim to perform uptake experiments on ice single crystals and well-defined polycrystalline ice. This set of experiments will rely on an existing method to analyse the number and size of individual ice grains in the sample. With this method we will also analyse the ice phase used in the coated wall flow tube and in the packed bed experiments described above. The uptake experiments on ice single crystals and well-defined polycrystalline ice will be performed in a Knudsen Cell so that also kinetic information on the uptake can be derived. The amount of adsorbed species with time will be monitored directly on the ice surface using radioactive labelled HNO4. Also the uptake of HNO3 and HNO2 will be briefly looked at for comparison reason. To investigate the protonation equilibrium of acids at the ice surface upon adsorption a new method will be developed based on laser induced fluorescence. The spectral changes of an pH sensitive, fluorescent dye will be used to derive the acidity of the ice surface and to observe the dissociation of acids upon adsorption. Sensitivity for the surface of the ice crystal will come from the amphiphilic properties of the fluorescent dye.
-