Project

Back to overview

Radiocarbon Inventories of Switzerland (RICH): An integrated approach to understand the changing carbon cycle

Applicant Eglinton Timothy
Number 193770
Funding scheme Sinergia
Research institution Departement Erdwissenschaften ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Interdisciplinary
Start/End 01.10.2020 - 30.09.2024
Approved amount 2'974'913.00
Show all

All Disciplines (3)

Discipline
Interdisciplinary
Other disciplines of Earth Sciences
Climatology. Atmospherical Chemistry, Aeronomy

Keywords (14)

methane; land-ocean interactions; carbon dioxide; carbon cycle; weathering; radiocarbon; soils; erosion; carbon inventories and stocktaking; regional-scale exchange; carbon reservoirs; Switzerland; land-use change; Anthropocene

Lay Summary (German)

Lead
Menschengemachter Klimawandel ist direkt mit einer Änderung des globalen Kohlenstoffkreislaufs verbunden, hervorgerufen durch die Emission von Treibhausgasen, insbesondere von Kohlendioxid und Methan, bei der Verbrennung fossiler Brennstoffe und einer veränderten Landnutzung. Unser fehlendes Wissen über den Umsatz und Austausch von Kohlenstoff zwischen der Atmosphäre und den terrestrischen sowie aquatischen Ökosystemen ist eine Hauptunsicherheit im Verständnis des globalen Kohlenstoffkreislaufs und seiner Rückwirkung mit dem Klimawandel. Wir benötigen insbesondere eine bessere Kenntnis des Transfers zwischen sich langsam austauschenden Kohlenstoff-Pools (wie z.B. fossilen Brennstoffen und Mineralböden) und der Atmosphäre sowie anderen sich schnell umsetzenden Pools. Das langlebige Kohlenstoffisotop Radiokohlenstoff (14C) bietet ein einzigartige Möglichkeit, den Umfang und die Geschwindigkeit des Kohlenstoffaustauschs zwischen den Kohlenstoffreservoiren zu quantifizieren.
Lay summary
Das Ziel des Sinergia-Projekts Radiokohlenstoff-Inventar der Schweiz (RICH) ist es, Radiokohlenstoff in der Atmosphäre (Kohlendioxid und Methan), in der terrestrische Biosphäre und den Böden sowie in dem aquatischen Kontinuum (Flüsse und Seen) der fünf Ökoregionen der Schweiz zu messen und zu modellieren. Wir werden diese Information nutzen, um den Kohlenstoffaustausch zwischen diesen unterschiedlichen Kompartimenten auf regionaler und nationaler Ebene zu quantifizieren, damit die Änderungen des Kohlenstoffkreislaufs während des industriellen Zeitalters zu bewerten und Richtwerte zu liefern, mit denen zukünftige Änderungen verglichen werden können. Die einzelnen Mitglieder des RICH-Sinergia-Teams werden sich auf unterschiedliche Themen fokussieren, wie das historische und gegenwärtige Radiokohlenstoff-Inventar von Kohlendioxid und Methan in der Atmosphäre, dem Vorrat und der Dynamik von Radiokohlenstoff in Schweizer Böden sowie dem Radiokohlenstoff-Inventar des gelösten und partikulären Kohlenstoffs der wichtigsten Flüsse und Seen der fünf Schweizer Ökoregionen. Die Fülle neuer Radiokohlenstoff-Daten aus diesen Teilprojekten werden in Modellen des Kohlenstoffkreislaufs eingesetzt, welche es erlauben, die Pfade und Dynamiken des Kohlenstoffaustauschs innerhalb von terrestrisch-aquatischen Netzwerken sowie die Quellen von Treibhausgasen zu quantifizieren.

Die Schweiz spürt bereits heute die Auswirkungen des Klimawandels und menschengemachter Störungen, die sich auf verschiedene Weise in den fünf Ökoregionen zeigen. Dieses Projekt wird helfen, diejenigen Kohlenstoff-Pools zu identifizieren, welche am anfälligsten auf den schnellen Wandel reagieren. Durch die Verbindung mit nationalen Umweltbeobachtungsprogrammen sowie der Einbeziehung von politischen Entscheidungsträgern kann diese Information wiederum genutzt werden, um Strategien für die Beurteilung und die Abschwächung der Auswirkungen des Klimawandels zu entwickeln.

Direct link to Lay Summary Last update: 17.09.2020

Lay Summary (English)

Lead
Anthropogenically-induced climate change is directly linked with perturbations to the global carbon cycle brought on by emissions of greenhouse gases, particularly carbon dioxide and methane, resulting from exploitation of fossil fuels and land-use change. Our missing knowledge of turnover and exchange of carbon between the atmosphere and terrestrial and aquatic ecosystems constitutes a key uncertainty in understanding the global carbon cycle and its feedback on climatic change. In particular, there is a need to better understand the transfer between slow-cycling carbon pools (i.e., fossil fuels and mineral soils) and the atmosphere and other fast-cycling pools. Radiocarbon, the long-lived radioactive isotope of carbon, is unique in its potential to quantify the magnitude and pace of carbon exchange among carbon reservoirs.
Lay summary

The objective of the Radiocarbon Inventories of Switzerland (RICH) Sinergia project is to undertake a coordinated radiocarbon measurement and modeling program encompassing the atmosphere (carbon dioxide and methane), the terrestrial biosphere and soils, as well as the aquatic continuum (rivers and lakes) across the five ecoregions of Switzerland. We will use this information to examine carbon exchange between these different pools on regional and national scales, to assess carbon cycle changes during the industrial era, and to provide a benchmark against which to gauge future changes. The RICH Sinergia team members will each focus on different themes, including present and past atmospheric radiocarbon inventories of carbon dioxide and methane, stocks and dynamics of radiocarbon held in Swiss soils, and radiocarbon inventories of dissolved and particulate carbon in major rivers and lakes draining different ecoregions of Switzerland. The wealth of new radiocarbon data derived from these sub-projects will be used in carbon cycle models that depict pathways and dynamics of carbon exchange within terrestrial-aquatic networks and quantify sources of greenhouse gases.

Switzerland is already experiencing the effects of climate change as well as from direct anthropogenic perturbations, which manifest themselves in different ways across its five ecoregions. This project will help to identify carbon pools that are most vulnerable to rapid change. By interfacing with national monitoring programs and engaging with policy makers, this information may, in turn, be used to develop strategies for assessment and mitigation of the effects of climate change.

Direct link to Lay Summary Last update: 17.09.2020

Responsible applicant and co-applicants

Employees

Project partner

Associated projects

Number Title Start Funding scheme
171171 The leak in the phosphorus cycle . exploring the mechanisms and controls of phos-phorus leaching in soils of acquiring and recycling forest ecosystems 01.06.2017 Project funding (Div. I-III)
170761 Enabling new frontiers in radiocarbon and geochemical analysis 01.09.2017 R'EQUIP
133817 Environmental Analysis and Dating with Radiocarbon using MICADAS 01.12.2010 R'EQUIP
175823 TEMPORAL RELATIONSHIPS AMONG PROXY SIGNALS IN MARINE SEDIMENTS (TRAMPOLINE) 01.01.2018 Project funding (Div. I-III)
182084 Exploring prehistoric vegetational and agricultural dynamics using annually laminated sediment records from Central and Southern Europe (ECSE) 01.02.2019 Project funding (Div. I-III)
182018 Dynamics of carbon sequestration and stabilisation in an agricultural long-term trial - DynaCarb 01.01.2019 Project funding (Div. I-III)
184865 Climate and Anthropogenetic PertubationS of Land-Ocean Carbon tracKs (CAPS-LOCK3) 01.04.2019 Project funding (Div. I-III)
166067 Geomorphic and climatic controls on riverine carbon export in active landscapes 01.10.2016 Project funding (Div. I-III)

Abstract

The turnover and exchange of carbon reservoirs in terrestrial and aquatic ecosystems with the atmosphere represents the greatest uncertainty in the global carbon cycle and its feedback with climatic changes. Radiocarbon analysis is an extremely powerful approach to identify the residence time of carbon, but broader scales assessments have so far been hampered by the costly measurements. The RICH project will capitalize from new method advancements with the goals: (i) to derive the first national-scale radiocarbon inventory encompassing atmospheric, terrestrial and aquatic carbon pools, (ii) to use this information to understand interrelationships between and dynamics of different carbon pools on regional scales, (iii) to assess how the distribution of 14C among C pools has changed over the industrial era, and (iv) to delineate trajectories for future changes in (radio)carbon inventories in response to different greenhouse gas (GHG) emission scenarios. In addition to providing unprecedented insights into the current state and vulnerability of carbon pools, this project will yield fundamental information on carbon cycle processes within the 5 ecoregions of Switzerland. This biogeographic mosaic encompasses different geomorphic, climate and ecosystem gradients which have experienced (and are projected to experience) different types and degrees of change in response to recent (and future) climate perturbations. In this way, we seek to deconvolute region-specific carbon cycle perturbations in response to influences by natural and anthropogenic forcing, thus informing on-going programs to assess and mitigate environmental change. The Sinergia RICH project will be executed by four groups that bring diverse expertise in the investigation of different facets on the carbon cycle, but share both interest and experience in the measurement and application of radiocarbon. RICH-Air will focus on constraining local to regional-scale variability in present and past atmospheric 14C inventories of carbon dioxide and methane. RICH-Soil will determine radiocarbon stocks presently held in Swiss soils, and take advantage of archived samples and incubation experiments in order to explore the dynamics of different soil carbon pools and carbon exchange with other reservoirs. RICH-Hydro will establish radiocarbon inventories of dissolved and particulate carbon phases in major river watersheds draining different ecoregions of Switzerland, as well as in corresponding receiving (lake) basins. Investigation of lake sediment records proximal to river termini will be used to constrain past 14C variability in terrestrial carbon export. RICH-Model will draw upon the wealth of new 14C (and 13C) data derived from the three other sub-projects and incorporate this information into an ensemble of isotope-enabled models. Individual modelling approaches vary in complexity and are tuned to address specific aspects of carbon cycling, including pathways and dynamics of carbon exchange within terrestrial-aquatic networks, and local- to regional-scale GHG source attribution. This ground-breaking project to develop a national radiocarbon inventory would be the first of its kind, outlining a new approach to the assessment of carbon emissions and stocktaking. From the perspective of carbon cycle studies, the project would provide a new level of understanding of carbon flows and dynamics spanning terrestrial, aquatic and atmospheric domains. By embracing the power of radiocarbon through a dedicated and comprehensive program of measurement and modeling strategy, we will identify pools that are most vulnerable to rapid change. This information will be used to define key parameters for sustained measurement, and to develop a radiocarbon observation and assessment strategy that serves as a model for potential broader-scale programs.
-