Project

Back to overview

Exploring nanoscale magnetic phenomena using a quantum microscope

Applicant Maletinsky Patrick
Number 188521
Funding scheme Project funding (Div. I-III)
Research institution Departement Physik Universität Basel
Institution of higher education University of Basel - BS
Main discipline Condensed Matter Physics
Start/End 01.10.2019 - 30.09.2023
Approved amount 1'311'532.00
Show all

All Disciplines (2)

Discipline
Condensed Matter Physics
Other disciplines of Physics

Keywords (13)

Quantum technologies; Spintronics; Quantum sensing; Scanning probe microscopy; Spin Physics; Superconductivity; Magnetic imaging; Solid state physics; Antiferromagnetism; Diamond; Magnetism; Nanosciences; Nanofabrication

Lay Summary (German)

Lead
Die Genauigkeit, mit der eine physikalische Messgrösse bestimmt werden kann, ist ultimativ durch die Gesetze der Quantenmechanik gesetzt. “Quanten-Sensoren” erreichen diese Grenze und formen ein äusserst aktives Forschungsgebiet der modernen Quantenphysik. Ziel dieses Projektes ist es, solche Quanten-Sensoren, welche unsere Gruppe über die letzten Jahre entwickelt und perfektioniert hat, auf neuartige Materialsysteme und deren Studium auf der Nanoskala anzuwenden. Im speziellen werden in diesem Projekt Antiferromagnete, Supraleiter und atomar dünne magnetische Systeme untersucht. Diese Materialien sind von besonderem wissenschaftlichem Interesse und versprechen vielfältige Anwendungsmöglichkeiten in neuartigen Schaltkreisen in der Elektronik und “Spintronik”, welche dieses Projekt ermöglichen könnte.
Lay summary
Das Gebiet der Quanten-Sensorik, d.h. die Erforschung und Realisierung von Sensoren, deren Genauigkeit durch die Gesetze der Quantenmechanik bestimmt sind, hat in den letzten Jahren gewaltige Fortschritte gemacht. Basierend auf unseren bisherigen Arbeiten ist es heute möglich, solche Sensoren bei Umgebungsbedingungen zur magnetischen Bildgebung einzelner Atome auf der Skala weniger Nanometer einzusetzen, was mit klassischen Sensoren nicht zu erreichen wäre. Diese herausragenden Eigenschaften unserer Quantensensoren haben bereist eine Vielzahl von Anwendungen in Wissenschaft und Industrie (s. z.Bsp. www.qnami.ch) gefunden. Des Weiteren bilden Quantensensoren einen speziellen Fokus innerhalb des Europäischen Quanten-Flagschiffs (www.qt.eu).

Im Rahmen unseres aktuellen Projektes, werden wir Quantensensoren auf drei Materialklassen anwenden, welche sowohl von grundlegendem, wie auch angewandtem Interesse sind: Antiferromagnete, Supraleiter und atomar dünne, sogenannte “van-der-Waals” Magnete. Unser Fokus wird dabei auf dynamischen Eigenschaften (Spin-Wellen, Magnetisierungsdynamik,…) und statischen Eigenschaften (Spin-Texturen, Ströme,…) dieser Materialien liegen. Unsere Experimente werden neue Einsichten in diese Materialsysteme liefern und unser fundamentales Wissen über diese Festkörpersysteme erweitern. Die aus unseren Experimenten resultierenden Erkenntnisse werden mögliche Anwendungen von neuartigen magnetischen Materialien in der Spintronik und Datenspeicherung ermöglichen und die Rolle der Quantensensorik in der Grundlagenforschung und Industrie weiter festigen.
Direct link to Lay Summary Last update: 08.11.2019

Responsible applicant and co-applicants

Employees

Associated projects

Number Title Start Funding scheme
155845 Single spin imaging of strongly correlated electron systems 01.06.2015 Temporary Backup Schemes
169321 Exploring nanoscale magnetic phenomena using a quantum microscope 01.10.2016 Project funding (Div. I-III)

Abstract

Quantum sensing technologies harness quantum phenomena, such as superposition or entanglement, to yield powerful sensors for quantities such as electric and magnetic fields, strain or temperature. Over the last years, such quantum sensors and in particular magnetometers based on individual spins in diamond have seen remarkable progress, in part based on the successful research and technological developments by the applicant's group at the University of Basel. Our state-of-the art quantum magnetometers, today offer spatial resolutions ~20 nm, magnetic field sensitivities sufficient to detect single electron spins and operate from cryogenic to ambient conditions. Their performance is thereby at the forefront of modern-day nanoscale sensing technologies and offer a highly attractive approach to address a wide range of challenging topics in nanoscience and technology, whose impact ranges from the life-sciences over semiconductor technologies to the fundamental physics questions we target here.In this project, we will build on this outstanding performance to address pressing open questions relevant to present-day research in condensed matter and mesoscopic physics. Specifically, we will employ our magnetometers to the emerging field of antiferromagnetic spintronics, to high-frequency dynamics of ferromagnets and to the low-temperature physics of superconductors and two-dimensional magnets in the atomic monolayer limit. Next to quantitative imaging of static magnetic spin textures or supercurrents, we will employ and further develop approaches to sense and image high-frequency magnetic fields with high resolution and sensitivity. Our novel and unique approach is ideally suited to yield insight into these physical systems, which is not readily accessible otherwise. Examples include the nanoscale probing and imaging of magnetic ordering in antiferromagnets, of spin-wave propagation in magnetic nanostructures or of magnetic ordering in atomically thin, silicene-based ferromagnets, which we will perform within this project. The scientific insights these studies will yield will have far-reaching impact in physics and material sciences and will offer new views on magnetism on the nanoscale.The main applicant is Prof. Dr. Patrick Maletinsky, an associate professor and head of the QuantumSensing Group, which he founded at the University of Basel in 2012. He has a strong background in quantum sensing, quantum optics, mesoscopic physics and nanotechnology. He obtained his physics diploma and doctoral degree at ETH Zurich and performed research in some of the world-leading research laboratories such as JILA or Harvard University. Together with international collaborators including the CNRS in France, research groups in Germany, Russia and Japan, and collaborators throughout Switzerland (Basel, ETH, EPFL, Geneva) this project establishes a coordinated, international effort to push the frontiers of condensed matter physics and nanotechnology using our novel, high-performance quantum sensors.Here we ask for the renewal of our soon to be concluded, three-year SNF project #169321, during which we have already achieved key breakthroughs of single-spin magnetometry in, e.g., the fields of antiferromagnetic spintronics or van-der-Waals magnetism. The present, challenging proposal builds on these achievements to not only advance our field or research but also further strengthen Switzerland's leading role quantum technology development and modern condensed matter research. We kindly ask the SNF to support this four year project with two postdocs and three PhD students who will ensure continuation of our highly successful line of experiments.
-