Project

Back to overview

Effect of particle softness and particle charge on crystallization and glass formation in colloidal microgels

English title Effect of particle softness and particle charge on crystallization and glass formation in colloidal microgels
Applicant Gasser Urs
Number 184839
Funding scheme Project funding (Div. I-III)
Research institution Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Condensed Matter Physics
Start/End 01.03.2020 - 29.02.2024
Approved amount 545'128.00
Show all

All Disciplines (2)

Discipline
Condensed Matter Physics
Physical Chemistry

Keywords (8)

glass transition; microscopy; rheology; colloids; crystallization; scattering; microgels; phase transitions

Lay Summary (German)

Lead
Kolloide sind überall in unserem Alltag anzutreffen und werden auch als Modellsysteme für fundamentale Aspekte in der Physik der kondensierten Materie verwendet. Sie umfassen harte, inkompressible und weiche, deformierbare Partikel suspendiert in einem Lösungsmittel. Das Phasenverhalten von deformierbaren Kolloiden ist weit weniger gut verstanden als jenes von harten Kolloiden, da deformierbare Kolloide ihre Grösse und Form aufgrund von Temperatur-, pH- oder Druckänderungen anpassen und deshalb ein komplexeres Verhalten zeigen. Aufgrund dieser Reaktivität sind weiche Kolloide von Interesse für vielfältige Anwendungen.
Lay summary
pNIPAM-Mikrogele sind ein gutes Modellsystem für weiche Kolloide. Ein bemerkenswerter Effekt ihrer Reaktivität ist, dass sie in konzentrierten Suspensionen spontan entschwellen. Grosse pNIPAM-Mikrogele schrumpfen spontan zur Grösse von kleineren aber sonst identischen pNIPAM-Mikrogelen in ihrer Umgebung. Wir haben ein Modell für dieses spontane Entschwellungsverhalten entwickelt und haben gezeigt, dass das Phasenverhalten direkt mit der Reaktivität der Mikrogele zusammenhängt.
Trotzdem bleiben viele Aspekte der Kristallbildung und Glasbildung in weichen Kolloiden unverstanden. Insbesondere gibt es noch kein akzeptiertes Modell für die Wechselwirkung weicher Kolloide, mit dem ihr Phasenverhalten vorhergesagt werden könnte. Neue Modelle für das Verhalten von weichen Kolloiden müssen ihre innere Struktur mit ihrer Wechselwirkung verknüpfen. Wir werden dies erreichen, indem wir auf unserem Modell für das oben erwähnte spontane Entschwellen aufbauen und Mikrogele mit unterschiedlicher Weichheit untersuchen, um den Übergang von harten zu weichen Kolloiden zu beobachten. Dazu verwenden wir eine Kombination aus Streutechniken, Rheologie, Osmometrie und Mikroskopie. Das Hauptziel besteht darin, ein Modell für weiche Mikrogele zu entwickeln, das sowohl das Einteilchen- als auch das Suspensionsverhalten vorhersagen kann und Einblicke in die Kristallisation und den Glasübergang von weichen Kolloiden gibt.
 
Direct link to Lay Summary Last update: 23.04.2019

Responsible applicant and co-applicants

Employees

Name Institute

Project partner

Associated projects

Number Title Start Funding scheme
132128 Phase behavior of concentrated microgel suspensions 01.08.2011 Project funding (Div. I-III)
153050 Heterogenous nucleation and crystal growth of colloidal model-systems on curved surfaces 01.08.2014 Project funding (Div. I-III)

Abstract

Colloids - mesoscopic particles suspended in a solvent - are a class of soft materials that are common in our everyday lives and are used in many applications. They are also used as model systems for fundamental aspects of condensed matter physics. Colloids comprise hard, incompressible and soft, deformable particles. Hard spheres have been the subject of many studies, as a hard-sphere repulsion is present in many colloidal systems and is also relevant in atomic and molecular materials, and their phase behavior is quite well understood. Next to hard spheres, soft and deformable colloidal particles are of great interest, as their softness makes these particles responsive to changes in their environment and, therefore, these particles have potential for many applications, e.g. as sensor particles or for drug delivery. However, their fundamental behavior is not as well understood as that of hard spheres. This is due to the importance and the interplay of the particle-internal as well as the colloidal degrees of freedom. The reactiveness of soft colloids implies that their interaction and phase behavior can change with temperature, pH, polydispersity, or other control parameters of their environment. Up to date, a general model for the interaction and phase behavior of such responsive particles is lacking.One of the most striking effects of such particle responsiveness is the spontaneous deswelling of colloidal pNIPAM microgels in concentrated suspensions - a good model system for soft colloids. Large pNIPAM microgels spontaneously deswell to the size of the smaller microgels in their surrounding. This implies a reduction of polydispersity, an effect that is not known from any other material. In our recent work, we have presented a model for this spontaneous deswelling behavior based on the osmotic pressure of the pNIPAM suspension, which is given by counterions originating from the pNIPAM microgels. We have also shown how the deswelling behavior changes the phase behavior of polydisperse suspensions, where the freezing point is linked to particle deswelling and the corresponding reduction of polydispersity.Our model for deswelling at high concentrations establishes a link of particle softness and colloidal phase behavior that has as yet not been considered in the literature. But many aspects remain unanswered. The interaction and its dependence on suspension concentration is still not modeled in a way that would allow to predict the collective behavior in crystallization or in the glass transition observed in soft colloids. Various interactions are discussed in the literature to predict the phase behavior, but the agreement with experimental work is often poor. While several interaction models predict a rich crystalline phase behavior, only crystal phases also known from hard colloids are observed experimentally. In a study of the glass transition of microgels, we have shown that the softness of these particles changes the fragility as also observed in other glass formers. The mechanism for this variation of fragility is, however, not known.New models for the behavior of soft colloids must link their internal structure with their interaction and phase behavior. We will achieve this by building on our model for spontaneous deswelling and by studying microgels with various softness to observe the transition from hard-sphere-like to soft behavior in their structure and dynamics. For this, we will use a combination of scattering techniques, rheology, and osmometry as well as direct imaging of microgel suspensions. The main goal is to find a model for soft microgels that can predict the single-particle as well as the suspension behavior and to obtain insight into the crystallization and glass transition of soft particles.
-