Project

Back to overview

High elevation precipitation in High Mountain Asia

English title High elevation precipitation in High Mountain Asia
Applicant Pellicciotti Francesca
Number 183633
Funding scheme Bilateral programmes
Research institution Swiss Federal Research Inst. WSL Direktion
Institution of higher education Swiss Federal Institute for Forest, Snow and Landscape Research - WSL
Main discipline Hydrology, Limnology, Glaciology
Start/End 01.11.2019 - 31.10.2022
Approved amount 249'818.00
Show all

All Disciplines (3)

Discipline
Hydrology, Limnology, Glaciology
Meteorology
Climatology. Atmospherical Chemistry, Aeronomy

Keywords (13)

Mass balance ; Regional climate ; Hydrology; Asian high mountains; Glacier melt; Glaciology; Catchment scale glacio-hydrological modelling; Debris-covered glaciers; High altitude seasonal snow cover; Remote sensing of glaciers; High altitude precipitation; Climate change impact on future streamflow; Glacio-hydrological monitoring

Lay Summary (Italian)

Lead
I ghiacciai delle catene montuose dell’Asia rappresentano la più grande massa di ghiaccio dopo le calotte polari, e generano risorse idriche dal loro scioglimento per milioni di persone che vivono nei bacini idrografici dei grandi fiumi di quel continente. L’attuale contributo dello scioglimento glaciale alla portata dei grandi fiumi è altamente incerto a causa della scarsa conoscenza delle precipitazioni di alta quota. La quantità di pioggia e neve, la loro variabilità spaziale e temporale sono tuttora sconosciute, e rappresentano l’incertezza maggiore nelle simulazioni di scioglimento dei ghiacciai, cambi di massa e acqua di scioglimento nei grandi fiumi dell’Asia.
Lay summary

Tema e obiettivi

L’obiettivo principale del nostro progetto è di determinare la quantità, stagionalità e variabilità temporale delle precipitazioni di alta quota, in una serie di bacini campione nelle catene montuose asiatiche. Specificatamente, in una prima fase intendiamo usare un modello di bilancio di massa e idrologico avanzato per calcolare la precipitazione di input al modello come termine residuo del bilancio di massa dei ghiacciai e del bilancio idrologico dei bacini. Questa modellazione inversa porterà a ricostruire le quantità di precipitazione, solida e liquida su un lungo periodo. In una seconda fase, useremo un modello atmosferico ad alta risoluzione per comprendere i meccanismi e processi fisici che generano la variabilità spaziale e la distribuzione della precipitazione lungo l’arco delle catene asiatiche, e dell’Himalaya in particolare.

 

Contesto socio-scientifico

Il nostro lavoro permetterà per la prima volta di comprendere i meccanismi che generano la precipitazione nelle catene montuose asiatiche e determinare la quantità di precipitazione ad alta quota. I risultati ottenuti permetteranno di ottenere una nuova generazione di simulazioni dell’acqua di scioglimento dei ghiacciai dell’Asia e nuove stime delle risorse idriche disponibili in una regione importante dal punto di vista della quantità di ghiaccio e del numero di persone che ne dipendono, in un contesto di scarsità, instabilità politica e crescente pressione sulle risorse idriche.

Direct link to Lay Summary Last update: 29.10.2019

Responsible applicant and co-applicants

Gesuchsteller/innen Ausland

Project partner

Associated projects

Number Title Start Funding scheme
125907 Future glacier evolution and consequences for the hydrology (FUGE) 01.05.2010 NRP 61 Sustainable Water Management
146761 Understanding Contrasts in High Mountain Hydrology in Asia (UNCOMUN) 01.12.2013 Project funding (Div. I-III)
189890 Understanding snow, glacier and rivers response to climate in High Mountain Asia (ASCENT) 01.03.2020 Bilateral programmes

Abstract

In this project, we will use a novel combination of in-situ data, models of glacier mass balance and hydrology, along with satellite data to reconstruct high mountain precipitation quantity, seasonality and variability in selected catchments of High Mountain Asia (HMA). HMA glaciers represent the largest mass of ice outside the Polar Regions and provide water resources for millions of people in the upper ranges of the major Asian rivers. Many of the headwater regions and downstream countries suffer from overuse of and increasing pressure on water resources, widespread poverty, ethnic conflicts and poor regulatory frameworks. In this context, decreasing streamflow derived from snow and ice will clearly threaten populations’ well-being and societal development. One key unknown in our ability to simulate glacier runoff and future catchment streamflow in response to a warming climate is high mountain precipitation, including quantity, seasonal variability and spatial distribution. To date, this is the largest source of uncertainty for catchments in HMA, where lack of in-situ, long-term data further hampers our skills at modelling precipitation forcing to hydrological models. Snow, the solid phase of precipitation, is a major contributor to total runoff but remains largely unconstrained in HMA. Here, we intend to build on: i) key recent advancements in the quality and sophistication of glacier mass balance and hydrological models available to the two applicants; ii) world-leading expertise in field data collection in this region together with rare datasets available to the main applicants; and iii) novel high resolution satellite data to constrain this key unknown. We will use a dual approach. First, by using an advanced model of glacier mass balance and hydrology in combination with detailed in-situ and satellite data for model input, calibration and validation we can determine the precipitation input as the residual of the water balance of high elevation catchments. Second, to provide physical explanations for the mechanisms generating the derived precipitation amounts and distribution, we will use a high resolution numerical non-hydrostatic atmospheric model (NHM) to simulate near-surface meteorological fields and precipitation processes for selected seasons. The outputs of the atmospheric model will be used to validate the precipitation obtained by closing the water balance and to understand the mechanisms governing the spatial and temporal patterns obtained. The Swiss and Japanese applicants have pioneered studies of glacier energy and mass balance and catchment hydrology at a variety of scales. We are now at a stage in which our glacier models are considerably advanced, and inclusive of most major processes that control the surface energy and mass balance of glaciers. By forcing the models with high quality input data and surface properties, we will be able to constrain the water balance of high elevation catchments at an unprecedented level. This dual approach exploits world-leading skills in glacier mass balance and atmospheric modelling and leverages new satellite products to derive geodetic mass balance and snow accumulation, and would provide novel, unique findings from extensive data sets collected in the past years by the applicants’ groups.
-