Project

Back to overview

High-resolution soft-X-ray ARPES facility at Swiss Light Source

Applicant Strokov Vladimir
Number 183300
Funding scheme R'EQUIP
Research institution Paul Scherrer Institut Swiss Light Source
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Condensed Matter Physics
Start/End 01.03.2019 - 31.08.2021
Approved amount 670'590.00
Show all

All Disciplines (3)

Discipline
Condensed Matter Physics
Material Sciences
Microelectronics. Optoelectronics

Keywords (9)

oxide heterostructures; semiconductor heterostructures; topological matter; synchrotron radiation; X-ray optics ; soft-X-ray ARPES; ARPES analyzers; electronic structure; quantum devices

Lay Summary (French)

Lead
Aujourd'hui, l'électronique traditionnelle basée sur les semi-conducteurs est en approche de leurs limites concernant la consommation d’énergie et l'opération à haute vitesse. Ce fait nécessite de retrouver des matériaux innovants, dont des system utilisant les propriétés topologique de matière et leurs hétérostructures avec les supraconducteurs et ferromagnétiques.
Lay summary
Contenu et objectifs du travail de recherche
La spectroscopie de photoémission résolue en angle qui peut être vue comme un microscope pour imager les électrons dans l'échantillon en fonction de leur vitesse. Les expériences utilisant des rayons X mous d´environ 1 keV peuvent sonder les échantillons plus profondément vers les interfaces présentant propriétés novatrices pour des dispositifs électroniques. Ces expériences exigent l'instrumentation de rayonnement synchrotronique la plus avancée qui est disponible aujourd'hui à notre ligne de lumière ADRESS à la Source de Lumière Suisse. Pour rester toujours à la pointe de ce domaine scientifique, nous allons augmenter spectaculairement la résolution énergétique et de l'efficacité de détection de notre instrument. Le projet comprendra un remplacement des éléments optiques de rayons X et de l’analyseur de photoémission, l’ajout d’instruments avancés de caractérisation des échantillons, etc. Ces améliorations nous permettront d'accéder à des propriétés de la matière encore inexplorées, par exemple, le couplage électron-phonon et les effets de proximité dans les hétérostructures essentielles pour les phénomènes quantiques comme la supraconductivité, l'intrication électronique en qubits, etc.

Contexte scientifique et social du projet de recherche
L'instrument modernisé contribuera la connaissance fondamentale de la structure électronique des matériaux novelles pour les technologies quantiques. Les résultats acquis aideront le développement des nouveaux dispositifs électroniques, y compris les ordinateurs quantiques, qu'amélioreront radicalement leur consommation d’énergie, miniaturisation et opération à haute vitesse.

Direct link to Lay Summary Last update: 27.11.2018

Responsible applicant and co-applicants

Project partner

Associated projects

Number Title Start Funding scheme
188709 Momentum- and Spin-Resolved Electronic Structure of Buried Oxide Interfaces (ctd.) 01.11.2019 Project funding (Div. I-III)
165529 Momentum- and Spin-Resolved Electronic Structure of Buried Oxide Interfaces 01.11.2016 Project funding (Div. I-III)
165910 Doping effects in Dirac materials and their interfaces: A route to spintronic applications 01.06.2016 Project funding (Div. I-III)
178867 Electron-Phonon Interactions in Rare-Earth Nickelates and Superconducting Cuprates 01.10.2018 Project funding (Div. I-III)
155873 Quantum MAny-body Physics in Solids 01.08.2015 Temporary Backup Schemes
177006 In-situ spectroscopy of oxide heterostructures 01.06.2018 R'EQUIP
165791 Electronic properties of engineered low-dimensional systems 01.08.2016 Project funding (Div. I-III)
170075 Experimental realization of novel quantum materials with MBE/PLD+STM+ARPES 01.11.2017 Bilateral programmes
179155 Structural and electronic properties of oxide structures and oxide interfaces 01.04.2018 Project funding (Div. I-III)

Abstract

Angle-resolved photoelectron spectroscopy (ARPES) is the main experimental tool to explore the electronic structure of solids resolved as a function of the electron momentum k. Soft-X-ray ARPES (SX-ARPES) operates in a photon energy range around 1 keV. Its crucial advantages for studying buried heterostructures and impurity systems, which are at the heart of current and future electronics, are enhanced probing depth compared to traditional ARPES at lower photon energies, and elemental/chemical state specificity achieved with resonant photoemission. These advantages are illustrated here with a few of our pioneering results including the electronic structure of bulk oxides and transition metal dichalcogenides, quantum well states in buried GaAlN/GaN high-electron-mobility transistor heterostructures, SiO2/EuO/Si spin injectors, the discovery of the polaronic nature of the LaAlO3/SrTiO3 interface charge carriers, the local electronic structure of magnetic impurities in doped semiconductors and topological materials, etc. The SX-ARPES facility at the SLS presently stays world leading in terms of energy resolution, detection efficiency, and delivering the highest brilliance of soft X-rays that has allowed us to push SX-ARPES from bulk materials to the most photon-hungry cases of buried heterostructures and impurities. Under commissioning now is a new multichannel spin analyzer iMott for the SX-ARPES facility that will allow previously unthinkable access to the spin texture of buried systems.Here, we propose a deep upgrade of our SX-ARPES facility at SLS to keep it on the forefront of spectroscopic instrumentation. The upgrade aims at (1) increasing of the SX-ARPES detection efficiency by a factor of ~4 by adopting an aggressive grazing-incidence experimental geometry and switching to a more transmissive ARPES analyzer; (2) improvement of the emission angle resolution and control with electronic deflection in the ARPES analyzer lens; (3) improvement of energy resolution by a factor ~3 with the new ARPES analyzer and replacement of the beamline monochromator with a new one incorporating high-precision mechanics and including three new gratings with ultra-low slope errors; (4) reliable off-line sample characterization tools such as a compact raster Auger spectrometer. This project follows an ongoing upgrade of the sample environment for in-situ field effect measurements for characterization of operative electronic devices. The full upgrade program will allow SX-ARPES to enter into totally unexplored fields which are requiring yet higher energy resolution and detection efficiency, for example, electron-boson interactions in three-dimensional bulk materials and even buried systems, where they can be tuned through the in-situ field effect. These spectroscopic findings will pave ways towards further technological advances in the field of electronic and spintronic devices. Apart from the SX-ARPES facility, the beamline improvements will also be highly beneficial for the Resonant X-ray Scattering (RIXS) facility at the same ADRESS beamline, whose energy resolution is presently limited by the beamline monochromator.Logistically, the project will involve numerous collaborations on the PSI internal, national, and international levels. With the SX-SARPES facility of the SLS facility delivering presently the worldwide most advanced spectroscopic possibilities, granting of the present project with keep the PSI and Swiss science in general at the frontiers of the fundamental and applied science in a multitude of hot and highly competitive fields, including topological matter, buried semiconductor and oxide heterostructures, magnetic doping of semiconductors and topological insulators, and other systems that are promising for future electronic and spintronic devices.
-