Project

Back to overview

Hard X-ray Photoelectron Spectrometer with environmental processing chamber for depth-resolved chemical-state analysis of functional thin films and their buried interfaces

English title Hard X-ray Photoelectron Spectrometer with environmental processing chamber for depth-resolved chemical-state analysis of functional thin films and their buried interfaces
Applicant Jeurgens Lars P.H.
Number 182987
Funding scheme R'EQUIP
Research institution Eidg. Materialprüfungs- und Forschungsanstalt (EMPA)
Institution of higher education Swiss Federal Laboratories for Materials Science and Technology - EMPA
Main discipline Material Sciences
Start/End 01.11.2019 - 31.10.2020
Approved amount 700'000.00
Show all

All Disciplines (5)

Discipline
Material Sciences
Inorganic Chemistry
Physical Chemistry
Chemical Engineering
Condensed Matter Physics

Keywords (10)

Functional thin films; Energy conversion materials; Chemical state analysis; Hard X-ray Photoelectron Spectroscopy; Oxides; In-situ environmental processing; Nanostructured Materials; Catalysis; Corrosion; Surface and Interface Analysis

Lay Summary (German)

Lead
Untersuchung der elektronischen Struktur und des chemischen Zustandes von funktionellen Dünnschichten und deren tiefliegenden Grenzflächen mittels harter Röntgen-Photoelektronenspektroskopie
Lay summary
Wir realisieren das erste HAXPES Labor in der Schweiz. Das hochmoderne Labor ist das erste seiner Art, gebaut nach dem neusten Stand der Technik. Es ermöglicht neue Analyseverfahren für die Untersuchung der chemischen Zusammensetzung und elektronischen Bandstruktur von Dünnschichtmaterialien und deren tiefliegenden Grenzflächen unter anwendungsnahen Bedingungen. Diese Untersuchungen sind relevant für vielfältige Forschungsbereiche, wie z.B. Korrosion, Katalyse, Medizinaltechnik, Energie, Mikroelektronik, Sensorik und Fügetechnologie.

Zentraler Teil des geplanten Labors ist ein zweistrahliges hartes Röntgen-Photoelektronenspektroskop (HAXPES)  ausgestattet mit hart Cr-Ka und soft Al-Ka Röntgenquellen, welche ist es direkt mit den Ultrahochvakuum (UHV) Kammern zur physikalischen Gasphasenabscheidung (PVD) und chemischen Oberflächenbehandlung verbunden. Es entsteht dadurch der Hauptvorteil dass man die funktionellen Eigenschaften von Materialien unter unterschiedlichsten Umgebungsbedingungen simulieren und untersuchen kann. Untersuchungen der chemischen und elektronischen Eigenschaften von tiefliegenden Grenzflächen in Abhängigkeit der Herstellungs- und Prozessbedingungen sind bis heute sehr selten. Die integrierte HAXPES-EPC Einrichtung bietet Materialwissenschaftlern, Chemikern und Physikern grundlegende Einblicke in die funktionellen Eigenschaften sowie Reaktivität und Stabilität von Nanomaterialien während der Herstellung und Nachbehandlung sowie unter aggressiven Bedingungen. Zusätzlich bietet ein solches System die Möglichkeit die grundlegenden und kritischen Prozesse an internen Grenzflächen, sowie deren Einfluss auf die Stabilität von 2D-Materialien, zu untersuchen.
Direct link to Lay Summary Last update: 01.09.2019

Responsible applicant and co-applicants

Project partner

Publications

Publication
Hard and soft X‐ray photoelectron spectroscopy for selective probing of surface and bulk chemical compositions in a perovskite‐type Ni catalyst
Sambalova Olga, Billeter Emanuel, Mann Jennifer, Miyayama Takuya, Burnat Dariusz, Heel Andre, Bleiner Davide, Borgschulte Andreas (2020), Hard and soft X‐ray photoelectron spectroscopy for selective probing of surface and bulk chemical compositions in a perovskite‐type Ni catalyst, in Surface and Interface Analysis, sia.6843-sia.6843.
Concepts for chemical state analysis at constant probing depth by lab‐based XPS/HAXPES combining soft and hard X‐ray sources
Siol Sebastian, Mann Jennifer, Newman John, Miyayama Takuya, Watanabe Katsumi, Schmutz Patrik, Cancellieri Claudia, Jeurgens Lars P.H. (2020), Concepts for chemical state analysis at constant probing depth by lab‐based XPS/HAXPES combining soft and hard X‐ray sources, in Surface and Interface Analysis, sia.6790-sia.6790.

Communication with the public

Communication Title Media Place Year
Other activities Empa Webpage International Western Switzerland German-speaking Switzerland 2020

Associated projects

Number Title Start Funding scheme
171412 Lifetime prediction of coated implants: study of time and loading dependent local deterioration mechanisms at interfaces and critical degrading effects 01.02.2017 Marie Heim-Voegtlin grants
156085 Predicting deterioration phenomena at coating/implant interfaces in-vivo 01.09.2015 Project funding (Div. I-III)
141828 NCCR MARVEL: Materials’ Revolution: Computational Design and Discovery of Novel Materials (phase I) 01.05.2014 National Centres of Competence in Research (NCCRs)
172662 Ultra-High Pressure Hydride X-ray Photoelectron Spectroscopy 01.03.2018 Project funding (Div. I-III)
174856 C16.0075: Oxide interface engineering for nanostructured devices 01.01.2017 COST (European Cooperation in Science and Technology)

Abstract

Empa scientists envisage the implementation of a unique research facility for state-of-the-art investigations of the evolution of the chemistry and electronic structure of functional thin films and their buried interfaces upon exposure to harsh environmental conditions, relevant to industrial applications in the fields of e.g. corrosion protection, catalysis, medical implants, energy-conversion system, microelectronics, sensing components and nano-joining. The central part of the envisioned research facility consists of a laboratory-based dual-beam Hard X-ray Photoelectron Spectrometer (HAXPES) coupled to an environmental processing chamber (EPC) for controlled exposures of functional thin films, catalysts and other nanomaterials to harsh environments. It will be the first lab-based HAXPES facility in Switzerland for state-of-the-art chemical-state studies of thin films and their buried interfaces, offering unique analytical and experimental capabilities, such as:• A much-increased attenuation length of detected photoelectrons from shallow core levels, thus allowing non-destructive analysis of the chemistry and electronic structure of thin films and their buried interfaces up to depths of about 20 nm.• Access to deep core-level photoelectron lines and deep-core-level Auger transitions, which are not accessible by conventional lab-based XPS systems, allowing cutting-edge chemical-state studies of functional thin films, catalysts and other types of functional nanomaterials. • Capability to separate commonly-overlapping photoelectron and Auger lines by employing much higher incident photon energies, thereby facilitating chemical-state and quantitative XPS analysis of complex multi-element compounds. • Extended capabilities for non-destructive quantitative XPS analysis of e.g. the composition, thickness, chemical state of thin films, catalysts and other nanomaterial systems.• Versatile experimental capabilities for in-situ environmental exposures of (nano)materials to harsh environments (e.g. at elevated temperatures, in reactive gases and humidity at ambient pressures, in electrolytes)As stated in the support letter of the PSI "such a lab-based facility at Empa would be an ideal complement to the techniques available at the SLS". The combined HAXPES-EPC facility will allow material scientists, chemists and physicists at the different Swiss research institutes (e.g. Empa, ETHZ, Epfl, Eawag, Uni Zürich, Uni Geneva) to advance their fundamental understanding on the functional properties, reactivity and stability of functional nanomaterials during successive fabrication and processing steps, as well as after subsequent harsh environmental exposures. These unique experimental capabilities will enable accurate tailoring of the performance and durability of functional nanomaterials by smart design and engineering of their surface and internal interfaces. The scientific findings will provide fundamental knowledge on the crucial role of internal interfaces on the reactivity and stability in low-dimensional systems.
-