Project

Back to overview

Experimental Quantum Communication Networks

Applicant Zbinden Hugo
Number 182664
Funding scheme Project funding (Div. I-III)
Research institution GAP-Optique Université de Genève
Institution of higher education University of Geneva - GE
Main discipline Other disciplines of Physics
Start/End 01.01.2019 - 31.12.2021
Approved amount 637'895.00
Show all

Keywords (3)

multi-partite entanglement ; secure communication; quantum communication

Lay Summary (French)

Lead
Le but de ce projet est de développer les outils scientifiques et technologiques nécessaires pour étudier et tester des réseaux de communication quantiques. Ceci inclut en particulier des sources photoniques, des détecteurs de photons et des convertisseurs de fréquence ou encore la distribution d’intrication et sa certification pour des systèmes multipartites.
Lay summary

L'European Quantum Flagship a récemment été annoncé. L'un des principaux objectifs est l'avancement des technologies et des applications de communication quantique. La mise au point de la prochaine génération de systèmes quantiques basés sur l'intrication se heurte à de nombreux défis allant de l'amélioration des technologies, comme les sources photoniques, les détecteurs et les convertisseurs de fréquence quantique, à la distribution et à la certification de l'intrication dans des réseaux complexes.

Notre objectif est de nous appuyer sur nos travaux récents et de continuer à développer les outils nécessaires pour générer, distribuer, mesurer et certifier les réseaux photoniques quantiques. Nous poursuivrons nos travaux sur les réseaux 1D multiphotons et étudierons les concepts “device independent” liés à la distribution de l'intrication dans des architectures à répéteurs quantiques. Nous visons également à explorer les réseaux 2D multipartites ciblant des expériences de certification de 10 à 100 qubits intriqués. Nous développerons également des technologies quantiques fondamentales, comme les sources photoniques, les détecteurs et les convertisseurs de fréquence quantiques, pour la prochaine génération d'expériences multi-photoniques en vue de leur compatibilité avec les répéteurs quantiques et les mémoires quantiques.

Notre travail vise une meilleure compréhension des ressources quantiques fondamentales telles que l'intrication, la non-localité et l'aléatoire, tout en développant des technologies quantiques nouvelles et améliorées pour étudier les concepts de prochaine génération dans les réseaux quantiques. Notre objectif est d'étendre le potentiel de la communication quantique pour la sécurité numérique et de rechercher de nouvelles applications au-delà.

Direct link to Lay Summary Last update: 27.11.2018

Lay Summary (English)

Lead
This project aims to develop the technologies and approaches to test and study complex quantum communication networks. This includes the development of the underlying quantum technologies: photonic sources, detectors, and quantum frequency convertors as well as the challenges for entanglement distribution and certification for highly multi-partite systems.
Lay summary

The European Quantum Flagship was recently announced with one of its main aims being the advancement of quantum communication technologies and applications. The development of next generation of entanglement-based quantum schemes face many challenges ranging from improved technologies, like photonic sources, detectors, and quantum frequency convertors, to the distribution and certification of entanglement in complex networks.

It is our aim here to build on our recent work and further develop the tools needed to generate, distribute, measure and certify complex quantum photonic networks. We plan to build on our previous work on 1D multi-photon networks and to study device-independent concepts related to the distribution of entanglement in quantum repeater architectures. We also aim to explore multi-partite 2D networks targeting certification experiments of 10-100 genuinely entangled qubits. We will also develop the underlying quantum technologies, like sources and detectors and quantum frequency converters, for the next generation of multi-photon experiments and their compatibility with quantum dots and quantum memories.

Our work is focused on developing a better understanding of fundamental quantum resources such as entanglement, nonlocality and randomness, by developing new and improved quantum technologies to study next generation concepts in quantum networks. We aim to further extend the potential of quantum communication for digital security and look for novel applications beyond.

Direct link to Lay Summary Last update: 27.11.2018

Responsible applicant and co-applicants

Employees

Publications

Publication
Heralded Distribution of Single-Photon Path Entanglement
Caspar P., Verbanis E., Oudot E., Maring N., Samara F., Caloz M., Perrenoud M., Sekatski P., Martin A., Sangouard N., Zbinden H., Thew R. T. (2020), Heralded Distribution of Single-Photon Path Entanglement, in Physical Review Letters, 125(11), 110506-110506.
High-rate photon pairs and sequential Time-Bin entanglement with Si 3 N 4 microring resonators
Samara Farid, Martin Anthony, Autebert Claire, Karpov Maxim, Kippenberg Tobias J., Zbinden Hugo, Thew Rob (2019), High-rate photon pairs and sequential Time-Bin entanglement with Si 3 N 4 microring resonators, in Optics Express, 27(14), 19309-19309.

Collaboration

Group / person Country
Types of collaboration
Sangouard group/L'Institut de Physique Théorique/CEA Saclay France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Kippenberg group/EPFL Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
QSIT Winter School + General Meeting 2020 Poster Towards Long-Distance Heralded Single-Photon Path Entanglement 03.02.2020 Arosa, Switzerland CASPAR Patrik;
QLight Summer School 2019 Poster Path Entanglement for Quantum Networks 30.09.2019 Erice, Italy CASPAR Patrik;
QCALL ESR Conference 2019 Poster Chip based QKD 16.09.2019 Mondello, Italy Sax Anna Rebecka Maria;
US-EU Workshop on Quantum Science Talk given at a conference Quantum Networking: the European Perspective 03.09.2019 Washington DC, United States of America Thew Robert;
Joint Annual Meeting of SPS and ÖPG Talk given at a conference Quantum Communication: from random numbers to teleportation 26.08.2019 Zurich, Switzerland Thew Robert;
QSIT Junior Meeting 2019 Talk given at a conference Single-photon path entanglement for quantum communication networks 03.06.2019 Flumserberg, Switzerland CASPAR Patrik;
QSIT Junior Meeting 2019 Poster Path Entanglement for Quantum Networks 03.06.2019 Flumserberg, Switzerland CASPAR Patrik;
Quantum Information and Measurement QIM V Talk given at a conference Entanglement Based Quantum Networking 04.04.2019 Rome, Italy Thew Robert;
European Quantum Technologies Conference EQTC19 Talk given at a conference Heralded Entanglement in Quantum Communication Networks 18.02.2019 Grenoble, France Thew Robert;


Associated projects

Number Title Start Funding scheme
176284 TRIQUI: Triplets pour l’Information Quantique 01.05.2018 Project funding (Div. I-III)
159592 Experimental Device independent Quantum Communication 01.07.2015 Project funding (Div. I-III)

Abstract

Quantum communication has traditionally focused on point-to-point quantum key dis- tribution and applications that can build on these one-dimensional (1D) networks. Progress in quantum technologies and their capabilities have also started to consider what else can be achieved beyond this relatively simple paradigm. This ranges from quantum sensor net- works to what is sometimes called the quantum internet, where a wide variety of quantum technologies, including distributed quantum computers, may be exploited, or connected by quantum repeaters or satellites. There are also novel ideas such as broadcast protocols or for secret sharing, for secure quantum communication beyond the 1D regime, as well as novel all-photonic quantum repeater schemes. These are typically built on entanglement-based approaches. Many of these have also been identified as part of the long-term vision for the recently announced European Quantum Technologies Flagship. Nonetheless, many funda- mental questions remain to be addresses and many of the technologies still require significant progress, before these can be realised.Our previous SNSF project focused on developing advanced photonic and entanglement based technologies for the generation, distribution, measurement and certification of quantum systems for quantum communication in a so-called “device-independent” fashion. In partic- ular, in bridging the gap between abstract security proofs and the security of real world systems and to lay the foundations for improved security for practical quantum communica- tion applications. This, however, was primarily done for quantum random number generation or simple point-to-point scenarios. In the case of the more practical weak-pulsed schemes this made significant advances, which have led to a patent and a SNSF Bridge project to explore and implement the innovation potential. While fully DI protocols remain extremely challenging, many lessons in terms of the trade-off between assumptions and practicality were learnt that will be of relevance for the more complex systems to be studied here.It is our aim here to build on our recent work and develop the experimental and theoret- ical tools needed to generate, distribute, measure and certify these more complex quantum photonic networks. There are two main directions. The first to build on our previous work on 1D multi-photon networks with integrated photonic sources and to study device inde- pendent concepts related to bi-locality and the distribution of entanglement in a quantum repeater architecture. The second research direction uses our path-entangled approach to explore, both experimentally and theoretically, multi-partite 2D networks targeting certifica- tion experiments of 10-100 genuinely entangled qubits. We will also concurrently continue to push the development of the underlying quantum technologies like sources and detectors and quantum frequency converters, increasingly exploiting integrated photonic solutions. One of the goals here is to develop the building blocks for the next generation of multi-photon experiments and there compatibility with quantum dots and quantum memories.These all represent serious challenges in terms of the certification and distribution of entanglement in quantum networks due to the scaling of the number of measurements and the performance requirements of the underlying technologies. As always, we will be constantly assessing the progress, both of the project and across the field, to ensure we successfully achieve our main objectives.
-