Project

Back to overview

Advanced super-resolution reconstruction methods for quantitative magnetic resonance imaging of the developing fetal brain

Applicant Bach Cuadra Meritxell
Number 182602
Funding scheme Project funding (Div. I-III)
Research institution Centre d'Imagerie BioMédicale (CIBM) CHUV
Institution of higher education University of Lausanne - LA
Main discipline Information Technology
Start/End 01.04.2019 - 31.03.2023
Approved amount 945'468.00
Show all

All Disciplines (4)

Discipline
Information Technology
Electrical Engineering
Neurophysiology and Brain Research
Biomedical Engineering

Keywords (7)

in-vivo fetal brain imaging; magnetic resonance imaging; super-resolution reconstruction; segmentation; early brain development; quantitative MRI; diffusion MRI

Lay Summary (French)

Lead
Aujourd'hui, il existe une prise de conscience sur l’importance centrale du développement du cerveau in-utero dans la santé future de l’enfant à naitre. Cependant, l'étude de la maturation cérébrale in vivo est difficile car elle implique plusieurs processus entremêlés complexes. Des méthodes poussées de traitement d’images en combinaison avec l’imagerie par résonance magnétique (IRM) ont permis d’évaluer la maturation cérébrale du nouveau-né et d'établir un lien entre les biomarqueurs extraits par l’imagerie quantitative et certaines affections cognitives, psychologiques et comportementales ultérieures. Malheureusement, ces mêmes techniques d’IRM ne sont pas directement applicables aux études fœtales, principalement à cause des mouvements incontrôlables du fœtus in-utero.
Lay summary

Contenu et objectifs du travail de recherche

Notre but principal est de développer des techniques avancées d’imagerie quantitative d’IRM pour étudier la maturation du cerveau humain in-utero, au moment où  ce dernier subit les changements les plus importants. À cette fin, nous allons développer de nouvelles méthodes de reconstruction d’IRM à haute-résolution spatiale conjointement avec (i) de nouvelles techniques de segmentation, (ii) de nouveaux algorithmes de reconstruction d’IRM de diffusion et (iii) de nouvelles séquences pour la cartographie T1 et T2 du cerveau fœtal.

Contexte scientifique et social du projet de recherche

Notre travail générera l’information multimodale de l’IRM à haute-résolution spatiale tridimensionnelle essentielle pour quantifier la maturation du cerveau. Nos travaux de recherche permettront l’extraction de biomarqueurs du développement in-utero, liés aux changements à la fois morphologiques et physiologiques. Ces nouvelles informations fourniront aux médecins de nouveaux outils de caractérisation du développement normal et anormal du cerveau fœtal. De plus, et au-delà  de l’importance clinique pour la santé fœtale, notre projet est aussi important pour les neurosciences fondamentales, puisque l’étude du développement in vivo viendrait compléter les connaissances sur les recherches faites sur des échantillons post-mortem.
Direct link to Lay Summary Last update: 23.10.2018

Responsible applicant and co-applicants

Employees

Project partner

Associated projects

Number Title Start Funding scheme
170894 Towards the fetal connectome: developing diffusion MR image analysis methods for the fetal brain 01.08.2016 International short research visits
157040 Advanced high-field MR imaging and quantitative image analysis for segmentation of the thalamic nuclei 01.04.2015 Project funding (Div. I-III)
141283 Novel Image Processing Methods for Fetal MR Imaging: 3D Reconstruction and Segmentation with Soft Priors 01.10.2012 Project funding (Div. I-III)

Abstract

Today, there is an increasing awareness that early brain development has an influence on health later in life. However, the study of brain maturation in vivo is challenging as it involves several complex intertwined processes. Advances in combining tailored image processing methods with magnetic resonance imaging (MRI) has allowed to assess the preterm and newborn brain maturation and to relate quantitative imaging biomarkers to later cognitive-psychological conditions and behavior. Unfortunately, the same MR imaging techniques are not straightforwardly extended to fetal studies.Notwithstanding these difficulties, impressive technical developments have been carried out by applying advanced super-resolution (SR) reconstruction methods to the morphological analysis of T2-weighted (T2w) imaging of the fetal brain. However, maturation of the brain is not only related to brain morphology, but also to other physiological processes that change brain microstructure. Quantitative MR imaging (qMRI) has gained a lot of attention in recent years and was shown to provide sensitive information on subtle changes in brain tissue after birth. Combining this sensitivity with super-resolution techniques adapted to prenatal imaging would allow high-resolution 3D quantitative MR imaging of the fetal brain, presenting a great opportunity to learn and understand more about the processes governing early brain maturation in utero. The main goal of this project is to develop advanced quantitative imaging techniques for studying the maturation of the human brain in its early stages of development, when it undergoes the most significant changes. To this end, we will conceive and implement new SR reconstruction methods in conjunction with novel segmentation and MR image acquisition schemes. A first aim of this project is to develop an integrated reconstruction and segmentation framework for T2w fetal imaging, providing significantly improved tissue contrast compared to state-of-the-art techniques. As the assessment of brain maturation is not only linked to morphology but also to physiological processes, the underlying microstructural changes need also to be imaged. A second goal of this project is to develop a SR framework for the reconstruction of diffusion MR images (dMRI). In combination with the planned advancement of fetal T2w and dMR imaging, we aim at developing new qMRI sequences for T1 and T2 mapping of the fetal brain. The possibility to image these quantitative characteristics in utero would be a major breakthrough in fetal MRI. In this research project, we will combine our SR framework with fast qMRI acquisition schemes tailored to deal with fetal motion. A major outcome of our project will be an integrated 3D high-resolution multi-modal MR imaging framework for quantifying brain maturation. At the end of the project, we will provide a solid and mathematically sound framework to better acquire and exploit very rich information provided by fetal brain MRI. We believe that our advanced SR techniques, combined with both segmentation and MR sequence development, will contribute to a more precise characterization of the fetal maturation. The derived multi-modal imaging biomarkers would provide doctors with new tools for evaluating pregnancies as well as to better characterize the normal and abnormal fetal brain development. Our research plan is not only relevant in a clinical context, but also for basic neuroscience. A better understanding of developmental processes in utero can complement the extensive research done on post-mortem specimen, linking brain research performed at different anatomical scales.
-