Back to overview

Design-principles and properties of networks and MOFs

English title Design-principles and properties of networks and MOFs
Applicant Housecroft Catherine Elizabeth
Number 182559
Funding scheme Project funding (Div. I-III)
Research institution Universität Basel Departement Chemie
Institution of higher education University of Basel - BS
Main discipline Inorganic Chemistry
Start/End 01.10.2018 - 31.01.2022
Approved amount 250'323.00
Show all

Keywords (5)

Emissive properties ; Coordination ; Porous materials ; Networks ; 3D-architectures

Lay Summary (German)

Es besteht Bedarf an systematischen Untersuchungen der Zusammenhänge von Netzwerken und metallorganischen Rahmenwerken (MOFs).
Lay summary
 Wir werden uns auf die Verwendung von tetratopischen und hexatopischen Oligopyridin-Liganden konzentrieren, bei denen zwei oder drei 4,2':6',4''-Terpyridin- oder 3,2':6',3''-Terpyridin-Domänen mit zentralen Kerneinheiten mit unterschiedlichem Konformationsgrad verbunden sind. Das grundlegende Ziel ist es, die Bildung von porösen Architekturen im Gegensatz zu Strukturen mit geringerer Dimensionalität kontrollieren zu können. Substitutive Effekte sind ein wichtiger Faktor bei der Steuerung bestimmter Baugruppen, aber nur mit einem systematischen Ansatz, einen einzelnen Strukturparameter gleichzeitig zu ändern, können wir dringend benötigte Konstruktionsprinzipien für Netzwerke und MOFs entwickeln, die auf Oligopyridin-Tektonen basieren.
Direct link to Lay Summary Last update: 28.09.2018

Responsible applicant and co-applicants


Name Institute

Project partner


Ditopic and Tetratopic 4,2':6',4''-Terpyridines as Structural Motifs in 2D- and 3D-Coordination Assemblies
Housecroft Catherine E., Constable Edwin C. (2019), Ditopic and Tetratopic 4,2':6',4''-Terpyridines as Structural Motifs in 2D- and 3D-Coordination Assemblies, in CHIMIA International Journal for Chemistry, 73(6), 462-467.

Associated projects

Number Title Start Funding scheme
162631 Materials chemistry and sustainable energy 01.10.2015 Project funding (Div. I-III)


We are now at a basic stage of understanding the design principles needed using divergent terpyridine ligands to direct assemblies towards 1D-coordination polymers and ladders, 2D-networks or porous 3D-architectures, the latter having the potential for small molecule uptake and storage. The present proposal consists of two sub-projects. The first is concerned with advancing our understanding of the design principles for 3D-architectures with the aim of better understanding the algorithms that direct a particular assembly. There is a need for systematic investigations of the assemblies of networks and metal-organic frameworks (MOFs). We will focus on the use of tetratopic and hexatopic oligopyridine ligands in which two or three 4,2':6',4''-terpyridine or 3,2':6',3''-terpyridine domains are connected to a central core units with differing degrees of conformational freedom. The fundamental objective is to be able to control the formation of porous architectures as opposed to lower dimensionality structures. Substituent effects are an important factor in terms of directing particular assemblies, but only with a systematic approach of altering a single structural parameter at a time can we develop much needed design principles for networks and MOFs predicated upon oligopyridine tectons. The second sub-project also falls within the theme of coordination polymers and networks but focuses on the incorporation of {Ir(C^N)2(N^N)}+ domains for the formation of emissive materials. Although the use of cyclometallated [Ir(C^N)2(N^N)]+ or [Ir(C^N)3] complexes as emitters in light-emitting electrochemical cells (LECs) or organic light-emitting diodes (OLEDs) are well established, they are almost exclusively mononuclear compounds or organic polymers with covalently linked [Ir(C^N)3] domains. Our goal is to create a suite of metalloligands based upon [Ir(C^N)2(N^N)]+ cores that can bind peripheral metal domains, thereby producing {Ir(C^N)2(N^N)}-containing coordination polymers and networks with emissive properties that can be incorporated into OLED devices. This project is directly related to potential applications in the solid-state lighting industry.