Project

Back to overview

Power-to-gas and network seasonal storage for promoting the safe penetration of renewables in Switzerland

Applicant Sansavini Giovanni
Number 182529
Funding scheme Project funding (Div. I-III)
Research institution Institut für Energietechnik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Mechanical Engineering
Start/End 01.06.2019 - 31.05.2023
Approved amount 242'964.00
Show all

All Disciplines (2)

Discipline
Mechanical Engineering
Electrical Engineering

Keywords (10)

Fully renewable electric power systems; Gas network storage; Power-to-gas; Security of electricity supply; Long-term seasonal energy storage; Energy transition; Energy system modelling; Mathematical optimization; Energy markets; Energy networks

Lay Summary (Italian)

Lead
L’impiego su larga scala di fonti energetiche rinnovabili solari è principalmente ostacolato dalla loro intrinseca variabilità. Ciò le rende fonti energetiche che non si possono piegare alle esigenze di bilanciamento di potenza elettrica, che deve sussistere ad ogni istante per mantenere la stabilità del sistema elettrico. Se le batterie possono fornire stabilità sul breve periodo, esse non sono in grado di provvedere ad un accumulo energetico stagionale. Infatti, durante l’inverno si registra un deficit di potenza solare. Inoltre, i bacini idrici svizzeri sono già sfruttati quasi a capacità e non si prevedono ampliamenti. Ci troviamo quindi in presenza di un conflitto tra uso di fonti energetiche sostenibili con caratteristiche stagionali e la necessità di fornire energia elettrica con continuità durante tutto l’anno.
Lay summary

Il nostro obiettivo principale è contribuire ad un uso sempre più massiccio di fonti energetiche rinnovabili ed alla transizione verso un sistema energetico sostenibile grazie allo sviluppo di un nuovo sistema di accumulo energetico stagionale. In particolare, (i) vogliamo utilizzare il processo di gassificazione dell’energia elettrica da solare fotovoltaico (power-to-gas) che è sovrabbondante durante la stagione estiva come accumulo energetico; (ii) vogliamo sfruttare la rete di trasporto gas esistente come serbatoio di questo gas “rinnovabile” da utilizzare per la produzione elettrica durante la stagione invernale; (iii) vogliamo assicurarci che tale sistema integrato riesca a garantire la sicurezza di approvvigionamento elettrico a cui la società moderna si è adattata.

Il nostro lavoro permetterà di aggiornare la Strategia Energetica 2050 in direzione di ancor maggiore sostenibilità.

Direct link to Lay Summary Last update: 26.06.2019

Responsible applicant and co-applicants

Employees

Name Institute

Associated projects

Number Title Start Funding scheme
154277 The Vulnerabilities of Future Interdependent Energy Networks 01.10.2014 Assistant Professor (AP) Energy Grants

Abstract

The proposed research is rooted in the fundamental question whether power-to-gas may have the potential to lead to a complete transition to the use of renewable primary energy resources (RES) in Switzerland by serving as long-term seasonal storage for the electric power infrastructure. Three main questions will be addressed, i.e. (i) the existence of a long-term seasonal storage infrastructure provided by the power-to-gas technology can foster the large penetration of renewables and the transition to 100% renewable electric power systems; (ii) the existing gas transmission and distribution infrastructure can serve as a reservoir for the “renewable” gas synthesized using the electric power from the renewable energy resources; (iii) the proposed long-term seasonal storage via power-to-gas (PtG) can guarantee the security of electricity supply and the seamless integration into the existing energy markets. A major obstacle for the large-scale deployment of RES is the lack of flexibility due to their stochastic behavior. However, many approaches for the planning and operation of renewable power systems partially account for the real-time need of electric power balance at any time, which is a much stronger requirement that the energy balance over a period of time. Moreover, long-term seasonal energy storage often occurs via potential energy in water reservoirs. However, the capacity of hydro storage is constrained by the land use and the economics of hydropower markets. To bridge this gap, we want to study and assess the optimal design and operations of the long-term seasonal energy storage infrastructure based on the power-to-gas technology with respect to siting, scale, and choice of gas. Furthermore, we want to identify the conditions under which the seasonal energy storage can ensure the security of the electricity supply to the Swiss electric power systems and can be smoothly integrated into the existing energy storage market. The optimum siting and sizing of the RES generators, which power the conversion of the synthetics gas facilities, and of the gas-fired power plants (GFPPs), which will exploit the “renewable” gas, is performed via mixed integer nonlinear programming considering several GFPPs capacity scenarios. Scenario-based stochastic optimization combined with the transient, one-dimensional model of the gas network flow guides the siting and sizing of the PtG facilities. Stochastic power flow analyses will provide the understanding of the capability of the electric distribution network to host the large share of RES necessary for powering the PtG facilities and will quantify the necessary upgrading costs. As a key enabler to fully renewable systems, the security of electricity supply ensured by the proposed electric power infrastructure with PtG storage will be investigated against the loss of the system elements. The projected results will further our understanding of the techno-economic feasibility and of the security-of-supply implications of converting renewable electricity into “renewable” gas and of the use of the existing natural gas transmission and distribution infrastructure as long-term storage for the winter season when RES are not abundant in the Swiss territory. The importance of the planned research for experts in the field will concern knowledge increase with respect to (i) the different roles of power-to-hydrogen and power-to-methane in the Swiss electric power system; (ii) the most appropriate scale for the power-to-gas technologies from the standpoint of the overall system security of electricity supply; (iii) the identification of the most compelling arguments that prevent large-scale CO2 recycling. Broader impact of this work: enabling the use of the existing gas transmission and distribution infrastructure as a long-term seasonal energy storage; quantifying the retrofitting costs of the electric power distribution; enabling the smooth integration of power-to-gas into the existing Swiss energy market. This knowledge will guide the re-assessment of the plans for the Swiss Energy Transition 2050.
-