Project

Back to overview

Development and Application of Rapid Conventional and Unconventional Quantitative Magnetic Resonance Imaging

English title Development and Application of Rapid Conventional and Unconventional Quantitative Magnetic Resonance Imaging
Applicant Bieri Oliver
Number 182008
Funding scheme Project funding (Div. I-III)
Research institution Radiologische Physik Departement Radiologie Universitätsspital Basel
Institution of higher education University of Basel - BS
Main discipline Biophysics
Start/End 01.05.2019 - 30.04.2023
Approved amount 699'150.00
Show all

All Disciplines (2)

Discipline
Biophysics
Other disciplines of Physics

Keywords (8)

quantification; electric properties tomography; steady state free precession; magnetization transfer; magnetic resonance imaging; relaxomentry; MRI; SSFP

Lay Summary (German)

Lead
Die Entwicklung neuer Magnet-Resonanz-Tomographie (MRT) Verfahren zur quantitativen und reproduzierbaren Erfassung von prognostischen oder diagnostischen Gewebekenngrössen bildet einen der herausforderndsten Aspekte der modernen MRT. Dieses Projekt leistet dazu einen Beitrag.
Lay summary

Inhalt und Ziele des Forschungsprojekts

In den meisten naturwissenschaftlichen Disziplinen nimmt die Erfassung von physikalischen Grössen eine zentrale Stellung ein. Solche quantitativen Messwerte haben nicht nur den entscheidenden Vorteil, dass sie objektiv und damit vorurteilsfrei sind, sondern auch, dass sie gut reproduzierbar sind. Grundsätzlich ist auch eine quantitative Bestimmung von prognostischen oder diagnostischen Gewebekenngrössen mittels MRT möglich: die «quantitative» MRT benötigt jedoch typischerweise eine um ein Vielfaches längere Aufnahmezeit im Vergleich zu einer einfachen «qualitativen» MRT. Aufgrund ihrer Geschwindigkeit werden daher qualitative MRT Verfahren vorrangig in der klinischen Routine und Diagnostik eingesetzt, obwohl sie zumeist nur eine reine „Hell-Dunkel-Interpretation von Bildpunkten“ zulassen, und damit der Interpretationsspielraum gross und die Messung im Allgemeinen wenig vergleichbar ist. Ziel dieses Forschungsprojektes ist deshalb die Entwicklung von neuen, quantitativen MRT Verfahren, die «schnell» genug sind um auch im klinischen Umfeld eingesetzt werden zu können. Einerseits werden frei bewegliche und «nichtbewegliche» Protonen untersucht. Ihre Eigenschaften gehören zu den bedeutendsten und sensitivsten MRT Kenngrössen für pathologische Veränderungen, da sie direkt die Interaktion der Wassermoleküle mit ihrer lokalen Umgebung widerspiegeln. Andererseits werden neue Verfahren gesucht, um elektrische Gewebeeigenschaften, wie zum Beispiel die Leitfähigkeit, zu messen.

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Das Projekt befasst sich mit der Entwicklung neuer, sehr schneller, objektiver und reproduzierbarer MRT Verfahren für die medizinische Bildgebung und Diagnostik in der klinischen Routine.

Direct link to Lay Summary Last update: 11.12.2018

Responsible applicant and co-applicants

Employees

Associated projects

Number Title Start Funding scheme
153332 Development of New Quantitative Steady State Magnetic Resonance Imaging Concepts for Fast High-Resolution Relaxometry of Living Tissue 01.07.2014 Project funding (Div. I-III)
118377 Development of new magnetic resonance acquisition concepts for magnetization transfer and oscillating steady state imaging 01.03.2008 Project funding (Div. I-III)
163330 Ultrasound guided motion mitigation of proton therapy in the lung 01.10.2016 Project funding (Div. I-III)
156860 Development, validation and application of novel strategies for MRI data acquisition, image registration and segmentation of the spinal cord in patients affected by multiple sclerosis. 01.01.2015 Project funding (Div. I-III)

Abstract

The magnetic resonance (MR) signal can be sensitized to a large variety of tissue parameters, as reflected by a vast range of dedicated clinical MR pulse sequences designed to generate contrast even for very subtle tissue alterations with high specificity and sensitivity. Such MR images can be acquired reasonably fast, but their contrast is a non-trivial weighting of various intrinsic and extrinsic parameters and thus not a direct measure for a specific tissue property. As a result, pathological alterations are not identified from a measurable, objective change in tissue properties but rely on a subjective reading of contrast differences on a physically meaningless scale that is affected not only by various random factors but also by instrumentation. Quantification of the MR signal in terms of the underlying biochemical and biophysical tissue parameters is thus generally thought to be the key to MR methodology to push conventional MRI beyond its current limits. It is thus not surprising that the promise of MRI in the tradition of scientific instrumentation has attracted considerable interest in the MR scientific community ever since. Especially, the continuous improvement and progress in scanner hardware and reliability has not only facilitated quantification, but also stimulated the development of a wide variety of methods for the extraction different biophysical and biochemical parameters. Noteworthy, although quantitative MRI dates back to the early 1970s, research and development is not only ongoing but performed world-wide with increased interest and effort.Unfortunately, MR-based tissue quantification is typically a very time-consuming process and can be biased by numerous factors. It is thus not surprising that over the years and even for the most fundamental MR tissue parameters, such as tissue relaxation, a whole ‘buffet’ of MR methods have been proposed to tackle the ‘reliable quantification in reasonable time’ problem for successful translation and application in the clinics. Only recently, the extraction of MR tissue quantities has become an even more important paramount goal since artificial intelligence and machine learning has entered the field of MRI relying on the availability of large amounts of standardized and comparable, such as quantitative, MRI data. We have more than a decade of experience in the development and translation of new quantitative MRI methods to the clinical setting. Recent developments, such as spiral readouts and configuration-based imaging methods have shown good prospects and high potential towards a ‘reliable quantification in reasonable time’ for a wide range of tissue parameters. In this research proposal, we further elaborate and extend our recent methodological achievements in a consequent and innovative manner to develop reliable tissue biomarkers for the detection of widespread pathophysiologic processes, as well as subtle and diffuse tissue alterations with high specificity and sensitivity.
-