Project

Back to overview

Advancing photonics for ultrafast science and technology

Applicant Heidt Alexander
Number 181222
Funding scheme Eccellenza fellowship
Research institution Institut für angewandte Physik Universität Bern
Institution of higher education University of Berne - BE
Main discipline Other disciplines of Physics
Start/End 01.07.2019 - 30.06.2024
Approved amount 1'806'896.00
Show all

Keywords (6)

Ultrashort laser pulses; Nonlinear fiber optics; Ultrafast science; Light-plasma interactions; Optical fibers; Extreme light

Lay Summary (German)

Lead
Laserlicht mit extremen spektralen oder zeitlichen Eigenschaften steht im Zentrum der Zukunftsvisionen von aktueller Forschung und Technologie. Kurzwelliges kohärentes Licht im extremen Ultraviolett (UV) oder Röntgenbereich macht die drei-dimensionale atomare Struktur von Materie sichtbar. Extrem kurze Laserpulse ermöglichen uns die Bewegung von Elektronen in Materie auf Ihrer natürlichen Zeitskala von einigen Atto-Sekunden nicht nur zu beobachten, sondern auch zu steuern. Dies könnte in Zukunft zur Entwicklung von neuartigen elektronischen Komponenten und Computern führen, die 100.000 Mal schneller arbeiten als heute. Während die Forschung an diesen Fragestellungen heute hauptsächlich an Grossforschungseinrichtungen stattfindet, sind neue innovative und kompakte Lichtquellen nötig, um dieser Technologie zum Durchbruch zu verhelfen.
Lay summary

Inhalt und Ziel des Forschungsprojekts

Unser Ziel ist es, neue kompakte und effiziente Quellen von extremem Laserlicht mit Hilfe von modernster faseroptischer Technologie zu entwickeln und anzuwenden. Dazu werden zunächst neuartige Konzepte zur Verstärkung von spektral sehr breitbandigen ultrakurzen Pulsen in optischen Fasern erforscht. Diese Laserpulse werden in gasgefüllte Hohlkernfasern eingekoppelt, in denen durch die hohe Lichtintensität ein Plasma entsteht, das durch nichtlineare Wechselwirkung die gewünschten extremen spektralen oder zeitlichen Eigenschaften des Lichtpulses erzeugt. Ein zentraler Aspekt des Projekts ist es, die Eigenschaften des Lichtpulses durch neue Wege der Plasmaerzeugung in Hohlkernfasern zu kontrollieren.

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Durch unsere Arbeit erwarten wir die Entdeckung von neuen Materiezuständen und neuen nichtlinearen Phänomenen, sowie die Entwicklung von neuer Technologie für faserbasierte Gaslaser und ultrakurzen Pulsquellen im Spektralbereich
vom extremen UV bis zum mittleren Infrarot. Dies wird neue Anwendungen in fundamentaler Forschung, Medizin, und Bildgebung ermöglichen, sowie einen entscheidenden Schritt zur Realisierung der eingangs erwähnten Zukunftsvisionen beitragen.

Direct link to Lay Summary Last update: 18.03.2019

Responsible applicant and co-applicants

Employees

Publications

Publication
Generalized spectral phase-only time-domain ptychographic phase reconstruction applied in nonlinear microscopy
Dwapanyin George, Spangenberg Dirk, Heidt Alexander, Feurer Thomas, Bosman Gurthwin, Neethling Pieter, Rohwer Erich (2020), Generalized spectral phase-only time-domain ptychographic phase reconstruction applied in nonlinear microscopy, in Journal of the Optical Society of America B, 37(11), A285.
Implementation of temporal ptychography algorithm, i2PIE, for improved single-beam coherent anti-Stokes Raman scattering measurements
Viljoen Ruan, Neethling Pieter, Spangenberg Dirk, Heidt Alexander, Frey Hans-Martin, Feurer Thomas, Rohwer Erich (2020), Implementation of temporal ptychography algorithm, i2PIE, for improved single-beam coherent anti-Stokes Raman scattering measurements, in Journal of the Optical Society of America B, 37(11), A259.
Noise amplification in all-normal dispersion fiber supercontinuum generation and its impact in ultrafast photonics applications
Sierro Benoît, Heidt Alexander (2020), Noise amplification in all-normal dispersion fiber supercontinuum generation and its impact in ultrafast photonics applications, in OSA Continuum, 1.
Temporal fine structure of all-normal dispersion fiber supercontinuum pulses caused by non-ideal pump pulse shapes
Rampur Anupamaa, Spangenberg Dirk, Stepniewski Grzegorz, Dobrakowski Dominik, Tarnowski Karol, Stefanska Karolina, Pazdzior Adam, Mergo Pawel, Martynkien Tadeusz, Feurer Thomas, Klimczak Mariusz, Heidt Alexander (2020), Temporal fine structure of all-normal dispersion fiber supercontinuum pulses caused by non-ideal pump pulse shapes, in Optics Express, 28(11), 16579.
Ultra low-noise coherent supercontinuum amplification and compression below 100 fs in an all-fiber polarization-maintaining thulium fiber amplifier
Rampur Anupamaa, Stepanenko Yuriy, Stępniewski Grzegorz, Kardaś Tomasz, Dobrakowski Dominik, Spangenberg Dirk-Mathys, Feurer Thomas, Heidt Alexander, Klimczak Mariusz (2019), Ultra low-noise coherent supercontinuum amplification and compression below 100 fs in an all-fiber polarization-maintaining thulium fiber amplifier, in Optics Express, 27(24), 35041.
Specialty Optical Fibers for the Generation of Light with Extreme Properties (Invited Paper)
Heidt Alexander, Spangenberg Dirk-Mathys, Pilz Sönke, Hochstrasser Martin, Ryser Manuel, Romano Valerio, Feurer Thomas (2019), Specialty Optical Fibers for the Generation of Light with Extreme Properties (Invited Paper), in Proceedings of SPIE Vol. 11206, SPIE, Bellingham, WA.

Datasets

Temporal fine structure of all-normal dispersion fiber supercontinuum pulses caused by non-ideal pump pulse shapes [Dataset]

Author Rampur, Anupamaa; Spangenberg, Dirk-Mathys; Stępniewski, Grzegorz; Dobrakowski, Dominik; Tarnowski, Karol; Stefańska, Karolina; Paździor, Adam; Mergo, Pawel; Martynkien, Tadeusz; Feurer, Thomas; Klimczak, Mariusz; Heidt, Alexander
Publication date 05.06.2020
Persistent Identifier (PID) 10.7892/boris.143434
Repository Bern Open Repository and Information System
Abstract
This dataset contains the data published in the manuscript "Temporal fine structure of all-normal dispersion fiber super continuum pulses caused by non-ideal pump pulse shapes", Opt. Express 28(11), 16579 (2020), https://doi.org/10.1364/OE.392871Funders: Swiss National Science Foundation, Grant number: PCEFP2_181222, University of Bern

Noise amplification in all-normal dispersion fiber supercontinuum generation and its impact in ultrafast photonics applications [Dataset]

Author Sierro, Benoît; Heidt, Alexander
Publication date 30.07.2020
Persistent Identifier (PID) 10.7892/boris.144958
Repository Bern Open Repository and Information System
Abstract
This dataset contains the data published in the manuscript "Noise amplification in all-normal dispersion fiber supercontinuum generation and its impact in ultrafast photonics applications", OSA Continuum, in press, https://doi.org/10.1364/OSAC.397603 Funders:Swiss National Science Foundation, Grant number: PCEFP2_181222, University of Bern

Collaboration

Group / person Country
Types of collaboration
Institute of Applied Physics, University of Jena Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Politecnico de Torino Italy (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Institute of Electronic Materials Technology, Warsaw Poland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Laser Research Institute, University of Stellenbosch South Africa (Africa)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Optoelectronics Research Centre, University of Southampton Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Scientific Colloquium, Department of Applied Science and Technology, Politecnico Torino Individual talk Shaping light with extreme properties using specialty optical fibre technology 25.11.2019 Torino, Italy Heidt Alexander;
Scientific Colloquium, Department of Information Engineering, University of Padova Individual talk Tailoring Light with Nonlinear Fiber Optics 22.11.2019 Padova, Italy Heidt Alexander;
Sixth International Workshop on Specialty Optical Fibers and Their Applications (WSOF 2019) Talk given at a conference Specialty Optical Fibers for the Generation of Light with Extreme Properties (invited) 06.11.2019 Charleston, South Carolina, United States of America Heidt Alexander; Spangenberg Dirk;
Optical Society of America Webinar Series Individual talk Everything You Always Wanted to Know about Supercontinuum Modelling in Optical Fibers (invited) 26.08.2019 Weltweite Ausstrahlung via online streaming / on demand video, United States of America Heidt Alexander;


Abstract

Understanding the interaction of intense ultrashort light pulses with plasmas is a key requirement to advance many ground-breaking strong-field physics applications like high harmonics generation (HHG), attoscience, and lightwave electronics. Gas-filled hollow-core photonic crystal fibers (HC-PCF) have emerged in recent years as an ideal platform for this purpose. The tight confinement of high intensity few-cycle laser pulses over long distances has made it possible to study the coherent nonlinear interaction between light and photo-ionized plasmas in a well-controlled environment, which led to the generation of light with extreme properties both in the temporal and the spectral domain.In this project I propose to explore new regimes of light-plasma interaction by combining advancements in the state-of-the-art of few-cycle laser pulse amplification in optical fibers with new concepts of plasma generation in HC-PCF. Few cycle pulses possess an extremely large spectral bandwidth in the order of one optical octave that exceeds the linear gain-bandwidth of any known medium, making their amplification a challenging task that will be tackled in this project with innovative concepts in fiber-optic technology, which are based on fiber manufacturing technology developed at the University of Bern. The developed amplification systems address the current quest for high average power few-cycle pulse sources, triggered by the need to increase the photon flux for coherent XUV spectroscopy, imaging, and attoscience applications based on HHG, which suffers from low efficiency.Further I envisage to combine these novel sources with new possibilities for exciting in-fiber electric gas discharges in HC-PCF. This would create an innovative and extremely versatile photonic platform ideally suited for the fundamental studies of light-plasma interactions in regimes not currently accessible, and also enable the development of in-fiber gas lasers and other novel light sources in emerging spectral regions with high potential impact on fundamental science, biology, healthcare, and sensing applications.
-