Project

Back to overview

Development of new hydrogen storage alloys for utilization of renewable energy and construction of the design guidelines aimed at practical use

English title Development of new hydrogen storage alloys for utilization of renewable energy and construction of the design guidelines aimed at practical use
Applicant Züttel Andreas
Number 180170
Funding scheme Bilateral programmes
Research institution Laboratoire des matériaux pour les énergies renouvelables EPFL - SB - ISIC - LMER
Institution of higher education EPF Lausanne - EPFL
Main discipline Condensed Matter Physics
Start/End 01.07.2018 - 30.06.2021
Approved amount 249'418.00
Show all

All Disciplines (2)

Discipline
Condensed Matter Physics
Physical Chemistry

Keywords (5)

Hydride; Magnesium; pseudo-Laves phase compounds ; Stability; Reactivity

Lay Summary (German)

Lead
Die installierte Spitzenleistung der erneuerbaren Energiewandlung steigt exponentiell und die Nachfrage nach Energiespeichern entsprechend. Die Speicherung von erneuerbarer Energie in Wasserstoff und Metallhydriden hat das Potenzial, auf globaler Ebene zu den saisonalen erneuerbaren Energiespeichern beizutragen, da die Speicherenergiedichte im Vergleich zu Batterien etwa um den Faktor 20 größer ist. Wir entwickeln neue Metallhydride mit einer hohen Wasserstoffdichte zwischen Interkalationsverbindungen und komplexen Hydriden.
Lay summary
Das Ziel dieses Projekts ist die Entwicklung neuer intermetallischer Verbindungen auf Magnesiumbasis (Mg) für die Wasserstoffspeicherung, die eine größere gravimetrische und volumetrische Wasserstoffspeicherdichte als eine Übergangsmetall-Wasserstoffspeicherlegierung, z. LaNi5 (1,4 Masse-% und 92 kgH2 / m3) und eine Wasserstoffabsorptions-Desorptionsreaktion unter praktischen Betriebsbedingungen (<100 ° C und mehrere> 0,1 MPa Gasdruck) für Wasserstoff als erneuerbaren Energieträger. Darüber hinaus werden wir den Wasserstoffabsorptions- und -desorptionsmechanismus aufklären und Entwurfsrichtlinien für praktische Wasserstoffspeicherlegierungen vorschlagen.
Um dieses Ziel zu erreichen, haben wir international anerkannte Wissenschaftler mit grundlegenden und praktischen Forschungskompetenzen und Erfahrungen in der Zusammenarbeit zwischen Japan und der Schweiz zusammengestellt. In diesem Projekt konzentrieren wir uns auf Legierungen auf Mg-Basis mit einer Laves-Phasenstruktur (wir beziehen uns hier auf Mg-basierte Pseudolaves-Phasenverbindungen), weil 1) Mg ein reichlich vorhandenes, billiges und ein Element mit niedriger Dichte ist und Wasserstoff mit hoher gravimetrischer und volumetrischer Absorption absorbiert Wasserstoffdichten (7,7 Masse-% und 109 kgH2 / m3); und 2) Laves-Phasenverbindungen zeigen eine Wasserstoffabsorptions- und Desorptionsreaktion, deren Temperatur- und Druckbedingungen durch Zusammensetzungen der Verbindungen eingestellt werden können. Die auf Mg basierenden Pseudolaves-Phasenverbindungen werden in Japan synthetisiert. Die Wasserstoffabsorptions- und Desorptionseigenschaften werden in Japan (Isothermen) und der Schweiz (Isotherme und in-situ XRD) untersucht. Dann wird eine Laves-Phasenverbindung LaMg2 anfänglich als Basis von Mg-basierten Pseudolaves-Phasenverbindungen fokussiert, weil LaMg2 eine der wenigen Mg-basierten Laves-Phasen ist und Wasserstoff (3,4 Massen-% und 120 kgH2 / m 3) bei 100 ° C absorbiert) . Durch Einstellen von Zusammensetzungen von LaMg & sub2; durch Zugabe eines dritten Elements, wie Übergangs- und Nicht-Übergangsmetallen, werden die Wasserstoffabsorptions- und Desorptionsreaktionsbedingungen verbessert, um T <100ºC und p> 0,1 MPa zu erreichen. Wir werden den Zyklus der Wasserstoffabsorption und -desorption in der Pseudo-Laves-Phase auf Mg-Basis in Japan untersuchen und die zyklierten Proben mit XPS, HPHT-XRD, Synchrotronpulver-Röntgenbeugung (SR-XRD) und ND in der Schweiz charakterisieren. In Kombination von japanischen und schweizerischen Ergebnissen werden wir schließlich Design-Richtlinien für Mg-basierte Pseudo-Laves-Phasenverbindungen vorschlagen, die auf praktische Wasserstoffspeicherlegierungen für die Nutzung erneuerbarer Energien abzielen.
Direct link to Lay Summary Last update: 06.08.2018

Lay Summary (English)

Lead
The installed peak power of renewable energy conversion is increasing exponentially and the demand for energy storage accordingly. The storage of renewable energy in hydrogen and metal hydrides has the potential to contribute on a global level to the seasonal renewable energy storage since the storage energy density is approximately a factor of 20 greater as comapared to batteries. We are developing new metal hydrides with a large hydrogen density between intercalation compounds and complex hydrides.
Lay summary
The goal of this project is to develop new magnesium (Mg) based intermetallic compounds for hydrogen storage, which have greater gravimetric and volumetric hydrogen storage densities than a transition metal hydrogen storage alloy e.g. LaNi5 (1.4 mass% and 92 kgH2/m3) and a hydrogen absorption desorption reaction at practical operative conditions (<100°C and several >0.1MPa of gas pressures) for hydrogen as a renewable energy carrier. In addition, we will elucidate hydrogen absorption and desorption mechanism and suggest design guidelines aimed at practical hydrogen storage alloys.
To accomplish the goal, we have assembled internationally recognized scientists with fundamental and practical research expertise and experience in collaboration between Japan and Switzerland. In this project, we focus on Mg based alloys with a Laves phase structure (we here refer to Mg based pseudo–Laves phase compounds) because 1) Mg is an abundant, cheap and a low density element and absorbs hydrogen with high gravimetric and volumetric hydrogen densities (7.7 mass% and 109 kgH2/m3); and 2) Laves phase compounds exhibit hydrogen absorption and desorption reaction, of which temperature and pressure conditions can be adjusted by compositions of the compounds. The Mg based pseudo–Laves phase compounds will be synthesized in Japan. The hydrogen absorption and desorption properties will be investigated in Japan (isotherms) and Switzerland (isotherm and in-situ XRD) . Then, a Laves phase compound LaMg2 will be initially focused as basis of Mg based pseudo–Laves phase compounds because LaMg2 is one of the few Mg based Laves phase and absorb hydrogen (3.4 mass % and 120 kgH2/m3) at 100°C). Adjusting compositions of LaMg2 by addition of a third element such as transition and non–transition metals, the hydrogen absorption and desorption reactions conditions will be improved to reach T < 100°C and p > 0.1MPa. We will examine cycling of hydrogen absorption and desorption reactions on Mg based pseudo–Laves phase in Japan and the cycled samples will be characterized by XPS, HPHT–XRD, synchrotron powder X–ray diffraction (SR–XRD) and ND in Switzerland. Combining Japanese and Swiss results, we will finally suggest design guidelines for Mg based pseudo–Laves phase compounds aimed at practical hydrogen storage alloys for utilization of renewable energy.
Direct link to Lay Summary Last update: 06.08.2018

Responsible applicant and co-applicants

Gesuchsteller/innen Ausland

Employees

Collaboration

Group / person Country
Types of collaboration
Tohoku University, Institute for Materials Research (ICC-IMR) Japan (Asia)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel

Abstract

The goal of this project is to develop new magnesium (Mg) based intermetallic compounds for hydrogen storage, which have greater gravimetric and volumetric hydrogen storage densities than a transition metal hydrogen storage alloy e.g. LaNi5 (1.4 mass% and 92 kgH2/m3) and a hydrogen absorption desorption reaction at practical operative conditions (<100°C and several >0.1MPa of gas pressures) for hydrogen as a renewable energy carrier. In addition, we will elucidate hydrogen absorption and desorption mechanism and suggest design guidelines aimed at practical hydrogen storage alloys.To accomplish the goal, we have assembled internationally recognized scientists with fundamental and practical research expertise and experience in collaboration between Japan and Switzerland. In this project, we focus on Mg based alloys with a Laves phase structure (we here refer to Mg based pseudo-Laves phase compounds) because 1) Mg is an abundant, cheap and a low density element and absorbs hydrogen with high gravimetric and volumetric hydrogen densities (7.7 mass% and 109 kgH2/m3); and 2) Laves phase compounds exhibit hydrogen absorption and desorption reaction, of which temperature and pressure conditions can be adjusted by compositions of the compounds. The Mg based pseudo-Laves phase compounds will be synthesized in Japan. The hydrogen absorption and desorption properties will be investigated in Japan (isotherms) and Switzerland (isotherm and in-situ XRD) . Then, a Laves phase compound LaMg2 will be initially focused as basis of Mg based pseudo-Laves phase compounds because LaMg2 is one of the few Mg based Laves phase and absorb hydrogen (3.4 mass % and 120 kgH2/m3) at 100°C). Adjusting compositions of LaMg2 by addition of a third element such as transition and non-transition metals, the hydrogen absorption and desorption reactions conditions will be improved to reach =100°C and >0.1 MPa of hydrogen gas pressures. Mg based pseudo-Laves phase compounds and the hydrides will be characterized for their surface and crystal structures by X-ray Photoelectron Spectroscopy (XPS) and High Pressure and High Temperature powder X-ray (HPHT-XRD) and Neutron Diffraction (ND) for elucidation of hydrogen absorption and desorption reaction mechanism. Furthermore, we will examine cycling of hydrogen absorption and desorption reactions on Mg based pseudo-Laves phase in Japan and the cycled samples will be characterized by XPS, HPHT-XRD, synchrotron powder X-ray diffraction (SR-XRD) and ND in Switzerland. Combining Japanese and Swiss results, we will finally suggest design guidelines for Mg based pseudo-Laves phase compounds aimed at practical hydrogen storage alloys for utilization of renewable energy.
-