Project

Back to overview

Organic aerosols’ impact on aerosol-cloud interactions in mixed-phase clouds

Applicant Borduas Nadine
Number 179703
Funding scheme Ambizione
Research institution Institut für Atmosphäre und Klima ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Climatology. Atmospherical Chemistry, Aeronomy
Start/End 01.11.2018 - 31.10.2022
Approved amount 912'684.00
Show all

All Disciplines (2)

Discipline
Climatology. Atmospherical Chemistry, Aeronomy
Organic Chemistry

Keywords (6)

organic aerosol; mixed-phase clouds; atmospheric chemistry; photochemistry; ice nucleation; cloud condensation nuclei

Lay Summary (French)

Lead
Pour qu’il y ait des nuages dans le ciel, nous avons besoin de trois ingrédients : de la convection, de l'eau et de très petites particules appelées aérosols. Nous nous intéressons particulièrement à ces aérosols car ceux-ci forment les gouttelettes d’eau, appelées noyaux de condensation, et les cristaux de glace, appelées particules de nucléation de glace. Les interactions entre aérosols et nuages sont difficiles à prédire et elles ont un effet incertain sur le bilan radiatif de notre planète. Les aérosols organiques représentent un sous-ensemble d’aérosols qui affectent les nuages en phase mixte, commun en Suisse. Les modifications chimiques et physiques causées par la photochimie au cours de la vie d’un aérosol dans l’atmosphère modifieront sa capacité à former des nuages en phase mixte.
Lay summary
Ce projet collaboratif combine de manière unique les méthodes de chimie organique avec une instrumentation de pointe pour la nucléation de nuages. Dans un premier temps, nous identifierons et caractériserons les polymères organiques présents dans les aérosols organiques qui sont des noyaux de condensation et des particules de nucléation de glace efficaces. Deuxièmement, nous quantifierons l'effet du traitement atmosphérique des polymères organiques atmosphériques sur l'efficacité des noyaux de condensation et de particules de nucléation de glace. Et troisièmement, nous identifierons les paramètres chimiques et physiques nécessaires pour prédire les fractions organiques des aérosols capables de générer des nuages en phase mixte. Les résultats attendus amélioreront notre compréhension du rôle de la chimie dans la prédiction des interactions aérosol-nuage et auront des implications sur les domaines de la chimie atmosphérique, de la science des aérosols et de la modélisation du climat.
Direct link to Lay Summary Last update: 23.11.2018

Responsible applicant and co-applicants

Employees

Publications

Publication
UVB-irradiated Laboratory-generated Secondary Organic Aerosol Extracts Have Increased Cloud Condensation Nuclei Abilities: Comparison with Dissolved Organic Matter and Implications for the Photomineralization Mechanism
Borduas-Dedekind Nadine, Nizkorodov Sergey, McNeill Kristopher (2020), UVB-irradiated Laboratory-generated Secondary Organic Aerosol Extracts Have Increased Cloud Condensation Nuclei Abilities: Comparison with Dissolved Organic Matter and Implications for the Photomineralization Mechanism, in CHIMIA International Journal for Chemistry, 74(3), 142-148.
Spatial and temporal variability in the ice-nucleating ability of alpine snowmelt and extension to frozen cloud fraction
Brennan Killian P., David Robert O., Borduas-Dedekind Nadine (2020), Spatial and temporal variability in the ice-nucleating ability of alpine snowmelt and extension to frozen cloud fraction, in Atmospheric Chemistry and Physics, 20(1), 163-180.
Photomineralization mechanism changes the ability of dissolved organic matter to activate cloud droplets and to nucleate ice crystals
Borduas-Dedekind Nadine, Ossola Rachele, David Robert O., Boynton Lin S., Weichlinger Vera, Kanji Zamin A., McNeill Kristopher (2019), Photomineralization mechanism changes the ability of dissolved organic matter to activate cloud droplets and to nucleate ice crystals, in Atmospheric Chemistry and Physics, 19(19), 12397-12412.
Reactive Oxygen Species Production from Secondary Organic Aerosols: The Importance of Singlet Oxygen
Manfrin Alessandro, Nizkorodov Sergey A., Malecha Kurtis T., Getzinger Gordon J., McNeill Kristopher, Borduas-Dedekind Nadine (2019), Reactive Oxygen Species Production from Secondary Organic Aerosols: The Importance of Singlet Oxygen, in Environmental Science & Technology, 53(15), 8553-8562.

Datasets

Photomineralization mechanism changes the ability of dissolved organic matter to activate cloud droplets and to nucleate ice crystals

Author Borduas-Dedekind, Nadine
Publication date 14.05.2019
Persistent Identifier (PID) https://doi.org/10.3929/ethz-b-000342107
Repository ETH Zurich Research Collection
Abstract
CCN and INP data of photo oxidized DOM samples.

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Invited talk for the Environmental Science seminar series at the University of Basel Individual talk In the air, in the ocean and in the soil: Photochemistry of organic matter produces reactive oxygen species 20.11.2019 Basel, Switzerland Borduas Nadine;
Invited talk in the Chemistry Seminar series at the University of Gothenburg Individual talk Reactive oxygen species in the atmosphere: the significance of singlet oxygen production within aqueous organic aerosols 25.10.2019 Gothenburg, Sweden Borduas Nadine;
Invited talk in the Atmospheric Science seminar series at the University of British-Columbia Individual talk Cool cloud chemistry: Molecular insights into the ice nucleating ability of organic carbon 05.09.2019 Vancouver, British-Columbia, Canada Borduas Nadine;
Invited talk in the Environmental Science groups at the University of California, Berkeley Individual talk Cool cloud chemistry: Molecular insights into the ice nucleating ability of organic carbon 03.09.2019 Berkeley, California, United States of America Borduas Nadine;
American Chemical Society Fall Meeting 2019 Talk given at a conference Molecular Insight of Organic Matter’s atmospheric Ice Nucleating Ability 25.08.2019 San Diego, United States of America Miller Anna Josefa Janu; Bogler Sophie; Brennan Killian Patrick; Borduas Nadine;
Gordon Research Conference - Atmospheric Chemistry Poster Reactive Oxygen Species in Aqueous Organic Aerosols: The Relevance of Singlet Oxygen (1O2) 28.07.2019 Newry, Maine, United States of America Leist Lisa Gerline Thekla; Borduas Nadine;
Invited talk in the Environmental Chemistry seminar series at the University of Toronto Individual talk Cool cloud chemistry: Molecular insights into the ice nucleating ability of organic carbon 25.07.2019 Toronto, Ontario, Canada Borduas Nadine;
European Geophysical Union Meeting 2019 Poster Heterogeneity of ice nucleating particles measured in Swiss alpine snow samples 07.04.2019 Vienna, Austria Borduas Nadine; Brennan Killian Patrick;
European Geophysical Union Meeting 2019 Talk given at a conference Reactive Oxygen Species (ROS) production in organic aerosols: The importance of singlet oxygen 07.04.2019 Vienna, Austria Borduas Nadine;
12th International Conference on Carbonaceous Particles in the Atmosphere (ICCPA 2019) Poster Molecular Insight on Organic Matter’s Ice Nucleating Ability in Immersion Freezing 03.04.2019 Vienna, Austria Miller Anna Josefa Janu; Bogler Sophie; Borduas Nadine;
Invited talk in Seminar series at the Institute of Meteorology and Climate Research at Karlsruhe Institute of Technology (KIT) Individual talk Atmospheric ice nucleation ability of organic matter 22.11.2018 Karlsruhe, Germany Borduas Nadine;


Knowledge transfer events

Active participation

Title Type of contribution Date Place Persons involved
Pinte de Science 2020 pour enfants (in French) Performances, exhibitions (e.g. for education institutions) 13.05.2020 online, Canada Borduas Nadine;
Mädchentag 2019 Performances, exhibitions (e.g. for education institutions) 03.09.2019 Zurich, Switzerland Borduas Nadine; Leist Lisa Gerline Thekla;


Awards

Title Year
Environmental Science & Technology’s Excellence in Review 2019 Award 2019
Student Travel award to the European Geophysical Union 2019

Abstract

To have clouds in the sky, three ingredients are necessary: convection, water and tiny particles called aerosols. We are particularly interested in these aerosols because they activate into water droplets, termed cloud condensation nuclei (CCN), and nucleate ice crystals, termed ice nucleating particles (INPs). Furthermore, aerosol-cloud interactions are difficult to predict and yet have a highly uncertain effect on the planet’s radiative balance and climate. Organic aerosols represent a subset of aerosols able to act as CCN and as, recently found, INPs, and affect the types of clouds in which liquid water co-exists with ice crystals, called mixed phase clouds, common in Switzerland. Between the location where organic aerosols are emitted and/or formed and where they act as CCN and INP in mixed phase clouds, they will undoubtedly undergo atmospheric processing including sunlight exposure. Chemical and physical changes caused by sunlight exposure, or photochemistry, during an aerosol’s approximately one-week lifetime in the atmosphere are expected to alter its ability to form mixed phase clouds.This collaborative project uniquely combines organic chemistry methods and analytical techniques, available in the Environmental Chemistry Group of Prof. McNeill, with state-of-the-art cloud nucleation instrumentation, available in the Atmospheric Physics Group of Prof. Lohmann, both at ETH. My group serves as a bridge to bring a unique environmental chemistry perspective to atmospheric science. The project objectives are three-fold. Firstly, we identify and characterize organic polymers present in organic aerosols that are efficient CCN and INPs. Secondly, we quantify the effect of atmospheric processing of organic atmospheric polymers on CCN and INP efficiency. And thirdly, we identify the key chemical and physical parameters required to adequately predict organic aerosol fractions able to act as CCN and INPs.The anticipated results will improve our understanding of the role of chemistry in predicting aerosol-cloud interactions and will have implications on the fields of atmospheric chemistry, aerosol science, and climate modelling.
-