Project

Back to overview

Tunable nanosecond laser for time-resolved serial crystallography at SLS and SwissFEL

English title Tunable nanosecond laser for time-resolved serial crystallography at SLS and SwissFEL
Applicant Standfuss Joerg
Number 177125
Funding scheme R'EQUIP
Research institution Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Biophysics
Start/End 01.01.2018 - 31.12.2019
Approved amount 100'000.00
Show all

All Disciplines (4)

Discipline
Biophysics
Structural Research
Molecular Biology
Pharmacology, Pharmacy

Keywords (9)

retinal binding proteins; light-driven pumps; serial femtosecond crystallography; optogenetics; G protein coupled receptors; visual photoreceptor rhodopsin; seven transmembrane proteins; kinetic crystallography; light-gated ion channels

Lay Summary (German)

Lead
Zeitaufgelöste Serielle Femtosekunden Kristallographie (TR-SFX) erlaubt es die Struktur und Funktion von Proteinen zu analysieren. Mit dem Anrege- und Abfrageverfahren kann ein Film aufgezeichnet werden um biologische Prozesse (z.B. Photosynthese, Membranpumpen) auf molekularer Ebene besser zu verstehen. Im Mikro- bis Millisekunden Bereich können solche Messungen an der Schweizer Licht Quelle (SLS) durchgeführt werden, für ultraschnelle Prozesse im Nano- bis Femtosekunden Bereich kommt der Schweizer Freie Elektronen Laser (SwissFEL) zum Einsatz. Die beantragte Ausrüstung kommt so einer möglichst grossen Anzahl von internationalen und nationalen Forschern zu Gute.
Lay summary

Inhalt und Ziel des Forschungsprojekts

Mit diesem Projekt werden die beiden PSI Grossforschungsanlagen SLS und SwissFEL mit einem abstimmbaren Nanosekunden Laser ausgerüstet. Damit werden die Anlagen für TR-SFX Experimente im Nanosekunden bis Millisekunden optimiert, der Zeitskala mit der dynamische Vorgänge auf Proteinniveau typischerweise ablaufen. Damit wird weltweit eine einzigartige Plattform geschaffen für Experimente an dynamischen biologischen Systemen. Die Anregungseffizienz wird erhöht und das Signal zu Rauschen Verhältnis signifikant verbessert.  Damit können kleinere oder schwieriger herzustellende Probenkristalle untersucht werden und die Strahlzeit effizienter genutzt werden. Das erlaubt Einblick in Prozesse die mit der bestehenden Infrastruktur nicht möglich ist.

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Die gewonnen Erkenntnisse helfen mit neue optogenetische Werkzeuge zu entwickeln. Damit kann das Verhalten von Zellen mit Licht beeinflusst werden und damit deren Einfluss auf Vorgänge im Körper, wie z.B. die Mukoviszidose, untersucht werden. Einige der vorgeschlagenen Projekte beschäftigen sich des Weiteren mit pharmakologischen Molekülen mit vielversprechenden Anwendungen als lichtaktivierbare Medikamente. Durch die Möglichkeit diese Moleküle gezielt mit Licht z.B. in einem Krebsgeschwür zu aktivieren kann die lokale Wirkung maximiert und Nebenwirkungen minimiert werden.

Keywords

Biology, Synchrotron, Free Electron Laser, Optical parametric oscillator, serial femtosecond crystallography, optogenetics

Direct link to Lay Summary Last update: 12.02.2018

Responsible applicant and co-applicants

Project partner

Associated projects

Number Title Start Funding scheme
182369 Development of native-SAD phasing for membrane protein structure determination 01.07.2019 Project funding (Div. I-III)
174169 A three-dimensional movie of the structural changes in a membrane chloride pump revealed by X-ray Free Electron Laser pulses 01.11.2017 Ambizione
173335 Analyzing protein dynamics in receptor signaling relevant to pharmacology 01.06.2017 Project funding (Div. I-III)
159558 Structural dynamics of 7TM proteins probed by serial femtosecond crystallography 01.05.2015 Project funding (Div. I-III)
179351 Tracking the structural dynamics of ligand-protein interactions using X-ray free electron lasers 01.05.2018 Project funding (Div. I-III)
153145 Serial femtosecond crystallography of GPCR signaling systems 01.06.2014 Project funding (Div. I-III)
166608 Control of Tubulin Structure and Function by Accessory Proteins and Drugs 01.04.2016 Project funding (Div. I-III)

Abstract

In 2017 the Swiss X-ray Free Electron Laser (SwissFEL) will start operation at the Paul Scherrer Institute (PSI). One of the most promising applications of the X-ray free electron laser (XFEL) technology is the determination of molecular movies of protein function by time-resolved serial femtosecond crystallography (TR-SFX). Together structural and dynamic information will provide unique insights into the function of proteins as the principal building blocks of our biology. With its unique infrastructure within Switzerland, the PSI is in the ideal position to establish itself as a world leader in the study of protein structural dynamics. It already provides well-equipped laboratory space, robotic crystallization facilities and three world-class protein crystallography beamlines at the Swiss Light Source (SLS) to a large community of structural biologists. At the SLS nearly 5000 protein structures have been determined and deposited in public databases with many more resulting from work by private pharma companies and not publically available. Soon the PSI will extend this portfolio of services by giving access to SwissFEL to further expand its large national and international user base. Serial crystallography relying on the ultrashort, high brilliance X-ray pulses produced by SwissFEL will allow researchers to perform both radiation damage free room-temperature protein structure determinations and time-resolved measurements with femtosecond time resolution.In the last two years, we have established methods for routine room temperature serial crystallography experiments at both 3rd-generation storage rings and at several XFEL facilities worldwide. Here we propose to build on these experiences and install identical tunable nanosecond laser pump systems at SLS and SwissFEL that are optimized for time-resolved measurements on protein crystals. This will allow users to perform many different types of experiments on a wide range of timescales, all using identical excitation conditions, which is important for comparing data sets between experiments and facilities. Currently the available time resolution at the SLS is in the millisecond regime, which is primarily due to the limited diffraction power of protein crystals. The planned SLS-2 upgrade to a diffraction limited storage ring will dramatically improve the flux density of the X-ray beam and allow measurements to be performed on faster timescales and smaller crystals. Serial sample injection at the SLS will allow us to solve the active state of many proteins and can act as important test for users if more extensive pump probe studies can be done efficiently at SwissFEL. The ability to use nanosecond long laser pulses to efficiently photoexcite samples at SwissFEL will enable researchers to probe long-lived intermediates in the protein’s photocycle in the nanosecond to millisecond regime. This feature is complementary to the current infrastructure available at SwissFEL to perform femtosecond to picosecond time-resolved experiments. By this the envisaged setup will maximize synergy between the two advanced X-ray sources and allow users to choose the one most appropriate for their biological questions.
-