Project

Back to overview

Georeferenced contact sensors for analyzing the dynamics of animal and human populations in relation to disease control

English title Georeferenced contact sensors for analyzing the dynamics of animal and human populations in relation to disease control
Applicant Zinsstag Jakob
Number 177083
Funding scheme R'EQUIP
Research institution Abt. öff. Gesundheitswesen und Epidemiologie Schweizerisches Tropen- und Public Health-Institut
Institution of higher education University of Basel - BS
Main discipline Methods of Epidemiology and Preventive Medicine
Start/End 01.12.2017 - 30.11.2018
Approved amount 62'856.00
Show all

All Disciplines (3)

Discipline
Methods of Epidemiology and Preventive Medicine
Mathematics
Veterinary Medicine

Keywords (9)

Animal Assisted Therapy; Rabies elimination; Contact network model; Machine learning; Metapopulation model; Mass vaccination; Transmission dynamics; Dogs; Livestock

Lay Summary (German)

Lead
Mit den vom R’equip Förderinstrument bereitgestellten Mitteln können Kontaktsensorenmit GPS-Ortung erworben werden. Diese Sensoren ermöglichen die Erhebung vonKontaktdaten für die Modellierung von Hundetollwut im Tschad und die epidemiologischeÜberwachung von Zoonosen in Guatemala sowie bei Schweizer Nutztieren. Zudemkönnen die Sensoren für die Untersuchung von Kontaktnetzwerken im Rahmen vontiergestützter Therapie eingesetzt werden.
Lay summary
Hintergrund: Die Kontaktsensoren mit GPS-Ortung ermöglichen die Aufzeichnung von Interaktionen
zwischen Tieren. Wie solche Daten für epidemiologische Untersuchungen verwendet
werden können, wird hier am Beispiel von Tollwut beschrieben. Tollwut ist eine virale
Erkrankung, die durch Bisse übertragen wird. Jährlich sterben ca. 60’000 Menschen an
Tollwut. Da in 95% dieser Menschen durch Hundebisse infiziert werden, ist das Impfen von
Hunden ein effektiver und nachhaltiger Weg um die Ansteckung von Menschen mit Tollwut
zu verhindern. Mathematische Modelle der Übertragungsprozesse ermöglichen eine
gezielte Planung solcher Impfkampagnen. Für realistische Übertragungsmodelle braucht
es jedoch Wissen über die Kontaktstruktur unter den Hunden. Die dazu nötigen Daten
können mit Kontaktsensoren erhoben werden. Solche Daten ermöglichen nicht nur
Simulationen von verschiedenen Impfstrategien auf realistischen Netzwerken sondern
liefern auch Informationen über die Einflüsse von Faktoren wie zum Beispiel Geschlecht,
Alter oder Tageszeit auf die Kontaktstruktur und das Bewegungsverhalten der Hunde.
Ziel: Die Kontaktsensoren sollen zu einem vertieften Verständnis von Interaktionen zwischen
Tieren und deren Einfluss auf die Ausbreitung von Krankheiten beitragen.
Bedeutung: Die Anschaffung der Sensoren unterstützt verschiedene wissenschaftliche Projekte. Im
Rahmen der Erforschung von Tollwut im Tschad ermöglichen die mit den Sensoren
erhobenen Daten eine realistischere Modellierung des Übertragungsprozesses und die
Verbesserung von Impfstrategien. Hunde Kontaknetzwerke werden vergleichend in Afrikanischen, Lateinamerikanischen und Asiatischen Ländern erhoben. So kann das soziale Verhalten von Hunden weltweit untersucht werden. In der Schweiz werden sie auch bei Nutztieren eingesetzt.
Direct link to Lay Summary Last update: 12.12.2017

Responsible applicant and co-applicants

Publications

Publication
The importance of dog population contact network structures in rabies transmission.
Laager Mirjam, Mbilo Céline, Madaye Enos Abdelaziz, Naminou Abakar, Léchenne Monique, Tschopp Aurélie, Naïssengar Service Kemdongarti, Smieszek Timo, Zinsstag Jakob, Chitnis Nakul (2018), The importance of dog population contact network structures in rabies transmission., in PLoS neglected tropical diseases, 12(8), 0006680-0006680.

Associated projects

Number Title Start Funding scheme
160067 Multiscale dynamics of dog rabies elimination 01.08.2015 Project funding (Div. I-III)
160919 Surveillance and response to zoonotic diseases in Maya communities of Guatemala: A case for One Health 01.03.2016 r4d (Swiss Programme for Research on Global Issues for Development)

Abstract

This project aims to improve the equipment and infrastructure of Swiss TPH and interested Swiss universities with an interconnected information management system and tailor-made miniaturized, combined contact sensor and geolocation devices produced by an ETHZ startup in Switzerland. Half of the required funding has been acquired. This R’Equip application complements two SNF funded projects a) multiscale dynamics of dog rabies elimination (SNF No. 310030_160067 / 1) and b) syndromic surveillance of zoonoses in Guatemala (SNF r4d No. IZ07Z0_160919 / 1). The equipment will also be used by the Veterinary Public Health Institute at the University of Bern for contact networks in Swiss livestock and investigations on dog ecology in South East Asia. Further, the Psychological Faculty of the University of Basel will use the devices for the study of contact networks in animal assisted therapy for patients with brain injuries. The main use is explained here for the dynamics of rabies elimination in African dogs, but the potential for its use for ecological and epidemiological studies has no limits.Approximately 59,000 people die of rabies - a viral zoonotic infectious disease - every year, with children in tropical, resource-limited countries being most at risk. Rabies transmission from dogs to humans and among dogs can only be sustainably interrupted by dog mass vaccination campaigns. For the last 18 years, the Swiss Tropical and Public Health Institute (Swiss TPH) has been collaborating with two Chadian partner institutions (the Institute de Recherche en Elevage pour le Développement (IRED) and the Centre de Support en Santé International (CSSI)) on the epidemiology and control of dog rabies in N’Djaména, the capital of Chad. Mathematical modelling provides a powerful tool to gain insight in disease transmission dynamics and to help optimize vaccination strategies for dog rabies elimination. In order to realistically model disease spread, the properties of the contact structure among the hosts need to be incorporated into such a model. Therefore, we plan to use geo-referenced contact sensors to analyze the contact network of dogs in N’Djaména to model rabies transmission and its possible elimination. Devices for the detection and record of close proximity events (contacts) between hosts have been developed by different research groups and used, almost exclusively, in human populations and wildlife to measure contact networks of epidemiological relevance and predator-prey interactions, respectively. Such devices however lack important context information, e.g., if a contact took place at a specific location that constitutes an attractor for both hosts wearing a contact sensor. Combining a contact sensor with a GPS logger in an integrated device (a geo-referenced contact sensor) would allow us to capture contacts with a very high precision while GPS data would help us to interpret contact data. To the best of our knowledge, a device combining both technologies is not commercially available. We identified an innovative spin-off company of ETH Zürich, Bonsai Systems, which has produced and tested the kind of geo-referenced contact sensors we need. The data gathered offers a unique opportunity to investigate dog contact networks. Analysis of contact patterns (e. g. influence of sex, season or time of the day) will lead to a better understanding of the social system of free-roaming domestic dogs, and tracking of their movement will give us insight into the determinants of a dog’s roaming behavior. The data will then be used as a basis for a stochastic model, where dogs will interact within a network that has the same properties as the network measured in the field. Compared to a model where the dogs interact homogeneously this will then show to what extent the contact pattern among the dogs contributes to the persistence of rabies. Through this approach, we hope to gain new insights into the transmission dynamics of rabies that can help to improve the strategy of upcoming vaccination campaigns and achieve global rabies elimination goals.Knowledge and understanding of contact network patterns between humans and between animals are critical for the understanding of social interaction, the transmission of infectious and parasitic diseases and the spread of information, to name just a few applications. Novel technologies, like contact sensors and geo-location, revolutionize the possibilities to follow up contact patterns at large scale, to send them to remote servers and to generate big datasets for the improvement of disease control and elimination.
-