Project

Back to overview

Versatile Characterization system for novel theranostic nanomaterials

English title Versatile Characterization system for novel theranostic nanomaterials
Applicant Pratsinis Sotiris E.
Number 177037
Funding scheme R'EQUIP
Research institution Institut für Verfahrenstechnik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Chemical Engineering
Start/End 01.12.2017 - 30.11.2018
Approved amount 73'620.00
Show all

All Disciplines (4)

Discipline
Chemical Engineering
Mechanical Engineering
Biomedical Engineering
Material Sciences

Keywords (8)

Near-Infrared; Photothermal Therapy; Cancer; Bioimaging; Fluorescence; Thermometry; flame synthesis; lanthanide

Lay Summary (German)

Lead
Photolumineszierende Materialien werden weitreichend als Kontrastmittel in biomedizinischer Forschung verwendet, um biologische Strukturen mit Hilfe von Licht sichtbar zu machen. Dies ermöglicht beispielsweise die Visualisierung von Blutgefässen oder die Erkennung von Tumoren. Materialien mit Lumineszenz-Emissionen im sichtbaren Bereich sind jedoch für die Bildgebung innerhalb biologischen Strukturen stark limitiert, da Licht mit diesen Wellenlängen vom Gewebe absorbiert werden. Diese Absorption ist jedoch im infrarotnahen Wellenlängenbereich (750-1400 nm) stark reduziert, was die Bildgebung tiefer liegender Gewebeschichten zulässt. Der Fokus dieses Projektes liegt auf der Entwicklung von Nanokristallen mit höchster Lumineszenz im infrarotnahen Wellenlängenbereich für biologische Anwendungen.
Lay summary

Nanokristalle basierend auf seltenen Erden  sind eine besonders vielversprechende photolumineszierende Materialgruppe,  da sie hochstabil und weitestgehend ungiftig für biologische Anwendungen sind. Die grösste Herausforderung besteht darin, derartige Nanomaterialien mit Lumineszenz im oben-erwähnten infrarotnahen Wellenlängenbereich und hoher Effizienz herzustellen. Ein genaueres Verständnis der zugrunde liegenden Mechanismen ermöglicht die Herstellung von optimierten Nanokristallen mit höchster Lumineszenz.
Diese Herausforderung kann mit dem hier vorgeschlagenen und vielseitigen System zur Charakterisierung von lumineszierenden Materialien bewältigt werden. Hauptbestandteil des Systems ist ein Spektrofluorimeter für eine präzise Analyse der Leucht-Eigenschaften. Zusätzliche Bestandteile erlauben die Charakterisierung dieser Eigenschaften unter verschiedenen Umgebungsbedingungen, zum Beispiel Temperatur oder Umgebungsgase. Diese Abhängigkeit der Lumineszenz kann zur Entwicklung von kontaktlosen Temperatur- oder Gassensoren genutzt werden. Das System wird abgerundet durch eine Kamera optimiert für den Nah-Infrarot-Bereich, welche die Bildgebung dieser Nanokristalle innerhalb biologischen Gewebes erlaubt. Die Anwendung dieser Materialien im biologischen Kontext wird in Zusammenarbeit mit Partnern der Universität Zürich durchgeführt.

Direct link to Lay Summary Last update: 29.11.2017

Responsible applicant and co-applicants

Collaboration

Group / person Country
Types of collaboration
ETH Zürich, OMEL group Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Material Research Society Fall Meeting Poster Nanothermometry by fluorescent Nd3+-doped nanocrystals 26.11.2018 Boston, United States of America Pratsinis Sotiris E.;


Associated projects

Number Title Start Funding scheme
163243 Multifunctional nanoparticles for targeted theranostics 01.01.2016 Project funding (Div. I-III)
159763 Nanostructured metal-oxide gas sensors for non-invasive disease detection by breath analysis 01.04.2015 Project funding (Div. I-III)
170729 Integrated system for in operando characterization and development of portable breath analyzers 01.12.2016 R'EQUIP

Abstract

The aim of this request is to acquire a versatile system for characterization, development and application of fluorescent bioimaging agents consisting of a spectrofluorimeter with various features and a near-infrared (NIR) camera. Photoluminescence imaging offers several advantages, such as high sensitivity, high planar resolution, real-time imaging, and simple and cost-efficient equipment compared to other clinical imaging techniques like computer tomography or magnetic resonance imaging. However, the imaging depth of biological tissue is strongly limited in the visible region due to high absorption and scattering of main constituents such as blood, skin or fat. By contrast, these effects are highly reduced in the near-infrared region (650-1350 nm), where also autofluorescence becomes negligible. Thus, by employing photoluminescent imaging agents that function predominantly in the NIR, structures located deeper inside the human tissue can be imaged.Our group focuses on the development of nanoparticles for biomedical applications via scalable and versatile flame synthesis (funded by SNF grant #163243). We have already investigated luminescent nanoparticles emitting in the visible range and applied for skin cancer cell imaging. Furthermore, the optimization of plasmonic structures for photothermal therapy and their combination with magnetic materials as MRI contrast agents has been studied. To progress our research towards more relevant in vivo studies, the operating range of these systems needs to be shifted to the NIR region.The need for the proposed system is caused by two reasons: By moving towards longer wavelength, the commonly employed detector materials (Si-based) cannot be used as their sensitivity rapidly drops above 800 nm. Thus, as NIR bioimaging agents are not yet established, standard imaging platforms such as microscopes can only be used for visible light. The second reason is that despite of increasing research on luminescent agents operating in the NIR, their characterization for the acquisition of system-independent performance numbers such as quantum yields with calibrated systems is scarce. Additionally, the dependence of the luminescent properties on its environment (temperature, pH, gas) can be closely studied to exploit it for sensing applications such as luminescence thermometry. The system is rounded off by the flexibility to couple the spectrofluorimeter as well as laser sources to application experiments outside of the machine, complemented by a NIR camera and a permeation tube setup for controlled gas supply.The resulting versatile platform will be applied in projects for the development of (A) highly luminescent nanocrystals in the NIR, (B) their use as temperature sensors through self-calibrated ratiometric luminescent nanothermometry, and (C) the integration of these materials into multifunctional systems for theranostics. Most of these projects will involve collaboration with our partners from the department of anatomy of the University of Zürich.
-