Project

Back to overview

TRIQUI: Triplets pour l’Information Quantique

English title TRIQUI: Triplets for Quantum Information
Applicant Zbinden Hugo
Number 176284
Funding scheme Project funding (Div. I-III)
Research institution GAP-Optique Université de Genève
Institution of higher education University of Geneva - GE
Main discipline Other disciplines of Physics
Start/End 01.05.2018 - 30.04.2022
Approved amount 511'022.00
Show all

Keywords (3)

Quantum Information; Quantum Optics; Non linear Optics

Lay Summary (French)

Lead
Le projet TRIQUI a comme but de produire, caractériser et appliquer des triplets de photons dans le domaine de la communication quantique et l'information quantique.
Lay summary

Le photon est la particule élémentaire de la lumière, et chaque source lumineuse en émet des quantités presque infinies. Mais étonnement, il se trouve que créer un et un seul photon représente un grand défi technologique. Pourtant, les photons uniques sont très utiles d'une part pour étudier la physique quantique, mais aussi dans des applications comme la cryptographie quantique, les générateurs de nombres aléatoires, voire les ordinateurs quantiques.

La génération de paires de photons est, au contraire, relativement aisée, grâce à l'utilisation de matériaux optiques non-linéaires d’ordre deux de grande qualité. Ces sources de paires de photons sont largement utilisées afin de démontrer l’intrication et la non-localité quantique, la téléportation quantique, ainsi que dans certaines applications.

Le projet TriQuI a pour ambition de répondre à la question suivante : à l’instar des paires de photons, les triplets de photons, de par leurs propriétés, pourront-ils eux aussi jouer un rôle majeur en optique quantique et non-linéaire ? La génération de triplets de photons est basée sur une interaction non-linéaire d’ordre trois, qui est la voie la plus directe pour produire des états quantiques purs à trois particules. Ces états peuvent présenter une intrication quantique d’ordre trois et leur statistique va alors au-delà de la statistique gaussienne des sources cohérentes et des sources paramétriques à deux photons, offrant ainsi de nouveaux outils à la mécanique quantique.

Ce projet multidisciplinaire entre optique guidée, optique non-linéaire, optique quantique et supraconductivité est le fruit de la collaboration entre quatre laboratoires : l’Institut Néel (NEEL), l’Institut Franche-Comté (Femto-ST), le Centre pour les Nanosciences et Nanotechnologies (C2N), et le Groupe de physique appliquée (GAP) de l’Université de Genève.

Direct link to Lay Summary Last update: 17.10.2017

Responsible applicant and co-applicants

Employees

Project partner

Associated projects

Number Title Start Funding scheme
182664 Experimental Quantum Communication Networks 01.01.2019 Project funding (Div. I-III)

Abstract

Twin photons have deeply influenced the history of nonlinear and quantum optics by their wide range of applications and the paradigmatic place they stand in generating new quantum states of light. From these seminal works on second-order optical parametric conversion to the nowadays mature sources for both classical and quantum optical applications, a long road has been covered thanks to the development of a classical and a quantum theoretical framework that has allowed to drive the experimental efforts, and thanks to the development of high-quality and highly second order nonlinear optical materials. As regards triple photon generation (TPG), the story is only starting. Then we can ask whether the properties of triple photons can play a similar major role in the future of nonlinear and quantum optics. Establishing a solid foundation for this new topic is the purpose of TriQuI. TPG is based on a third-order nonlinear optical interaction, which is the most direct way to produce pure quantum three-photon states. These states can exhibit three-body quantum entanglement and their statistics go beyond the usual Gaussian statistics of coherent sources and optical parametric twin-photon generators, offering new tools for quantum mechanics. Over a period of 48 months, TriQuI will deal with theoretical and experimental physics, and will bring strong innovation in both materials, nonlinear materials and quantum optics aspects. In this multidisciplinary project involving wave guides fabrication, guided optics, nonlinear optics and quantum optics, we have joint together Institut Néel (NEEL), Institut Franche-Comté Electronique, Mécanique, Thermique et Optique - Sciences et Technologie (FEMTO-ST), Center for Nanosciences and Nanotechnologies (C2N), and Group of Applied Physics (GAP) of the University of Geneva for the success of this project. We have complementary fields of expertise: design of ridge guides (FEMTO-ST), nonlinear optics (NEEL), quantum nonlinear optics (C2N), single photon counting and quantum information (GAP). This relationship guarantees a transversal and synergic approach with a rapid feedback between elaboration of optical wave guides and 3P generation, and between the nonlinear generation problematic and the studies and the manipulation of quantum properties. TriQuI will follow 5 main goals: 1) the design and elaboration of uncoated or coated KTP and TiO2 ridge waveguides using an original process based on precision dicing ; 2) the design and implementation of spontaneous TPG in the optical parametric oscillation regime, as well as seeded TPG in the travelling-wave regime; 3) the design and fabrication of efficient superconducting nanowire single photon detectors based on molybdenum silicide; 4) the theoretical and experimental study of the triple-photon states quantum properties, including the evaluation of unthought-of forward-looking applications based on three-bodies quantum correlations and entanglements ; 5) the energy-time encoding to demonstrate Bell correlations ; the creation and detection of heralded bi-partite Bell correlations ; and the theoretical study of the creation of bi-partite photon-number correlations using photon counting preceded by a displacement operation in phase space on a heralding mode. As conclusion, we hope that the achievement of TriQuI will constitute a unique corpus of nonlinear and quantum experiments and knowledge allowing the three-photon state to be generated and controlled, and in fine to become realistic tools for quantum information.
-