Project

Back to overview

Towards a complete approach for robotic cochlea implantation - Complementing steps of robotic inner ear access and electrode array insertion

Applicant Weber Stefan
Number 176007
Funding scheme Project funding (Div. I-III)
Research institution ARTORG Center Medizinische Fakultät Universität Bern
Institution of higher education University of Berne - BE
Main discipline Electrical Engineering
Start/End 01.10.2017 - 30.09.2021
Approved amount 910'000.00
Show all

All Disciplines (2)

Discipline
Electrical Engineering
Biomedical Engineering

Keywords (7)

Bone drilling; Cochlea; Sensors; Image guided surgery; Electrode insertion; Robotics; Medical imaging processing

Lay Summary (German)

Lead
Ein Cochleaimplantat ist ein elektronisches Hörgerät das gehörlosen Menschen das Hören ermöglicht. Um ein Cochleaimplantat in das Ohr eines tauben Patienten einzubringen, muss der Hals-, Nasen-, Ohrenchirurg hinter der Ohrmuschel manuell einen sehr exakten Zugang durch den Schädelknochen bis ins Innenohr öffnen. Dabei muss ausreichend Knochen entfernt werden um die notwendige Sicht auf das Innenohr zu gewährleisten, andererseits müssen Verletzungen von im Knochen verlaufenden Nerven vermieden werden. Die Implantatelektrode wird danach in die Hörschnecke (Cochlea) eingebracht, das Implantat wird angeeschaltet und der Patient vermag zu Hören.
Lay summary
Ziel dieses Forschungsprojekt ist es, zu untersuchen ob neuartige, computer- und robotergestützte Ansätze zu einem verbesserten und reproduzierbareren Operationsergebnis beitragen können.  Hierbei wird in Computertomographiebildern des Patienten ein Tunnel mit einem Durchmesser von 1.8 bzw. 2.5 mm von hinter dem Ohr direkt bis in die Cochlea geplant, der unmittelbar zwischen dem Gesichtsnerv und dem Geschmacksnerv hindurchführt. Die Implantatelektrode kann darüber in einem definierten Eintrittswinkel in die Hörschnecke eingeführt werden. Diese geplante Trajektorie wird dann während der Operation mit einem Roboter gebohrt. Aufgrund der vorhandenen Größenverhältnisse im Schädel und Innenohr muss der Roboter auf wenige Zehntelmillimeter  genau bohren können. Für den Chirurgen gibt es hier keine direkten visuellen Kontrollmöglichkeiten. Um beim Bohrvorgang die nötige Sicherheit für den Roboter zu gewährleisten, sind deshalb dezidierte und voneinander unabhängige Sicherheitsmechanismen erforderlich, die in diesem Verfahren erstmalig zur Anwendung kommen. Dies ist vergleichbar mit dem Instrumentenflugprinzip eines modernen Flugzeugs, das auch bei fehlenden Sichtverhältnissen eine sichere Flugzeugführung gewährleistet.
In diesem Projekt sollen Methoden und Ansätze zur Komplementierung des existierenden und klinisch erprobten  robotischen Mittelohrzugangs um Elemente ergänzt werden, die eine vollständige robotische Cochleaimplantation ermöglichen könnten. Zum einen ist dies der Innenohrzugang, der zunächst bildbasiert geplant und dann sensor-geführt mit dem Robotersystem gebohrt werden muss. Zum Anderen soll ein klinisch nutzbarer Ansatz für eine robotische Elektrodeninsertion konzipiert und durchgesetzt werden. Beide Elemente werden präklinisch anhand von Phantomen und ex-vivo Modellen entwickelt. 
Direct link to Lay Summary Last update: 13.11.2017

Responsible applicant and co-applicants

Employees

Publications

Publication
Refined process model for robotic middle and inner ear access
Müller Fabian, Schneider Daniel, Hermann Jan, Anso Juan, Pereira Bom Braga Gabriela, Matulic Marco, Weber Stefan (2019), Refined process model for robotic middle and inner ear access, in Burgert Oliver (ed.), Hochschule Reutlingen, Fakultät Informatik, Reutlingen.
Robotic cochlear implantation: feasibility of a multiport approach in an ex vivo model
Schneider Daniel, Stenin Igor, Ansó Juan, Hermann Jan, Mueller Fabian, Pereira Bom Braga Gabriela, Rathgeb Christoph, Wimmer Wilhelm, Schipper Joerg, Kristin Julia, Caversaccio Marco, Anschuetz Lukas, Weber Stefan, Klenzner Thomas (2019), Robotic cochlear implantation: feasibility of a multiport approach in an ex vivo model, in European Archives of Oto-Rhino-Laryngology, 276(5), 1283-1289.
Feasibility of Robotic Multiport Cochlear Implantation - Evaluation in an Ex-Vivo Model
Schneider Daniel, Stenin Igor, Anso Juan, Hermann Jan, Müller Fabian Matthias, Braga Gabriela Pereira Bom, Weber Stefan, Anschütz Lukas Peter, Klenzner Thomas (2018), Feasibility of Robotic Multiport Cochlear Implantation - Evaluation in an Ex-Vivo Model, in CURAC, Leipzig, Germany-, -.
Genauigkeit und Machbarkeit robotische Multi-Port Cochleaimplantation - Evaluierung am Phantom
Schneider Daniel, Anso Juan, Huth Markus, Stenin Igor, Anschütz Lukas Peter, Hermann Jan, Wimmer Wilhelm, Caversaccio Marco, Weber Stefan, Schipper Jörg, Klenzner Thomas (2017), Genauigkeit und Machbarkeit robotische Multi-Port Cochleaimplantation - Evaluierung am Phantom, in 25. Jahrestagung der Gesellschaft für Schädelbasischirurgie 2017, Heidelberg, Germany-, -.

Collaboration

Group / person Country
Types of collaboration
University Hospital Antwerp (UZA) Belgium (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
HNO Universitätsklinikum Düsseldorf Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
HNO Inselspital, Bern Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
IGIC Talk given at a conference Image-guidance and robotic technology to support surgery on the lateral skull base 04.11.2019 Mannheim, Germany Müller Fabian;
CURAC Talk given at a conference Mehrere 19.09.2019 Reutlingen, Germany O'Toole Bom Braga Gabriela; Apelt Mareike; Weber Stefan; Hermann Jan; Müller Fabian;
Amercian cochlear implant alliance Talk given at a conference Feasibility of Pediatric Robotic cochlear implants in phantoms 10.07.2019 Miami, United States of America O'Toole Bom Braga Gabriela; Weber Stefan;
CURAC Talk given at a conference Mehrere 13.09.2018 Leipzig, Germany Weber Stefan; O'Toole Bom Braga Gabriela; Apelt Mareike; Hermann Jan; Müller Fabian;
Cochlear Implants Congress 2018 Talk given at a conference Mehrere 27.06.2018 Antwerp, Belgium Müller Fabian; O'Toole Bom Braga Gabriela; Hermann Jan; Weber Stefan;
Hamlyn Symposium on Medical Robotics Talk given at a conference Robotic cochlear implantation 24.06.2018 London, Great Britain and Northern Ireland Hermann Jan; Müller Fabian;
CURAC Talk given at a conference Mehrere 13.10.2017 Leipzig, Germany Hermann Jan; Weber Stefan; O'Toole Bom Braga Gabriela; Müller Fabian;


Knowledge transfer events

Active participation

Title Type of contribution Date Place Persons involved
Besuch Gymnasium Hofwil Performances, exhibitions (e.g. for education institutions) 02.07.2019 Bern, Switzerland Apelt Mareike; Müller Fabian; O'Toole Bom Braga Gabriela; Weber Stefan; Hermann Jan;
Besuch Gymnasium Neufeld Performances, exhibitions (e.g. for education institutions) 31.10.2018 Bern, Switzerland O'Toole Bom Braga Gabriela; Müller Fabian; Hermann Jan; Apelt Mareike; Weber Stefan;
Nacht der Forschung Universität Bern Workshop 16.09.2018 Bern, Switzerland Weber Stefan; Hermann Jan; Müller Fabian; O'Toole Bom Braga Gabriela;


Self-organised

Title Date Place
Neujahrsempfang der stadtberner FDP Fraktion 2019 07.01.2019 Bern, Switzerland

Communication with the public

Communication Title Media Place Year
Talks/events/exhibitions BME Day 2019 German-speaking Switzerland 2019
Talks/events/exhibitions FDP Apero German-speaking Switzerland 2019
New media (web, blogs, podcasts, news feeds etc.) ARTORG Center for Biomedical Engineering Research LinkedIn Western Switzerland Italian-speaking Switzerland Rhaeto-Romanic Switzerland International German-speaking Switzerland 2018
Talks/events/exhibitions BME Day 2018 German-speaking Switzerland 2018
Talks/events/exhibitions Nacht der Forschung German-speaking Switzerland 2018
Media relations: print media, online media ARTORG Website German-speaking Switzerland Western Switzerland Italian-speaking Switzerland 2017

Awards

Title Year
Swiss Medtech Award https://www.swissmedtechday.ch/sma 2019
Hamlyn Surgical Robotics Challenge - Best Video Award 2018

Associated projects

Number Title Start Funding scheme
176498 Towards Intelligent Sensor-enhanced Robotic Neurosurgery 01.01.2018 Bridge - Discovery

Abstract

The Cochlear implant (CI) is a neuroprosthetic that restores hearing in patients with se-vere-to-profound sensorineural hearing loss (Eshraghi et al. 2012) , high frequency hear-ing loss (Turner et al. 2008) and unilateral hearing loss (Boyd 2015). During the microsur-gical CI implantation procedure, the otologist creates a cone-shaped access to the inner ear by passing through the mastoid bone, traversing past the facial nerve, the chorda tympani and ossicles. The otologist uses visual examination through the 20 mm opening to advance the drill either to the natural opening of the cochlea (round window) or an inci-sion into the cochlea (cochleostomy). Then the implant electrode is inserted into the coch-lea with as much care as the tactile abilities of the otologist permit. Once the implant is functional, the electrode sends out electric impulses to stimulate the spiral ganglion cells that innervate the fibres of the auditory nerve to convert external sounds into electronic signatures that are interpreted as hearing by the brain’s auditory cortex. CI implantation to date is a manual procedure in which variations in operator experience and skill are associated with inconsistent surgical and audiological outcomes. In particular trauma caused by the cochlear access, electrode insertion and electrode placement impact the effectiveness of hearing restoration (Lehnhardt 1993) (Roland 2005) (Pau et al. 2007). Limits of human tactile sensing, feedback and dexterity have proved a barrier to reduce procedural invasiveness and attempts to improve outcomes without computer assistance have been challenging (Coulson et al. 2007)(James et al. 2005). The investigation of aug-menting tools for CI surgery has resulted in the concept of Robotic Cochlea Implantation (RCI), in which each stage of the manual procedure is superseded by sensor data-driven devices. They will replace:i)the surgeon’s “decide as you go” approach with patient-specific computer based planning (CAP, phase 1) of all relevant treatment aspects using preoperatively ac-quired 3D imaging, ii)the manual middle and inner ear access with a minimally invasive robotic approach access to the middle ear (RMA, phase 2) and inner ear (RIA, phase 3) subsequently; iii)free-hand manual electrode insertion with speed & force controlled robotic electrode insertion (REI, phase 4). We have evolved the RCI model and demonstrated its feasibility for robotic middle ear ac-cess in patients (Weber et al. 2017). The work proposed herein focusses on the investigation of methods and approaches to complement our existing RCI model with clinically viable solutions for robotic inner ear access and robotic electrode insertion. The aim of this project is the investigation of an approach to inner ear access, including: aspects of geometric planning, multi sensor-based robotic control of the actual drilling process and investigation of tool-tissue interac-tion, all based on the development of suitable anatomical phantoms; as well as experi-mental investigation of efficiency and efficacy of the approach both in phantoms and in-vivo. Proposed research towards robotic electrode insertion encompasses the experimental investigation of different electrode insertion approaches through the combination of ele-ments such as previously developed insertion guide tubes, manual insertion, motorized insertion, and the monitoring and feedback of applicable insertion forces. Additionally, the feasibility of a multi-port approach (i.e. several drill trajectories for multiple instrument placement) to support a controlled and reproducible insertion process will be investigated. An experimental technical model incorporating reproducible conditions, anatomical varia-bility and sufficient complexity will be developed as part of the work.The experimental work conducted for each of the treatment modules will aid in determin-ing optimised technical and performance parameters that will underlie prototype compo-nents to be tested in in vitro and ex vivo pilot studies. Experimental results will also be used to investigate: i) the feasibility and benefits of performing all of the RCI modules in a robotic treatment model approach, and ii) the generalisability of a robotic treatment model for the development of novel skull-base applications for robotic surgery.
-