Project

Back to overview

Electro-optics of semiconductor nanostructures

English title Electro-optics of semiconductor nanostructures
Applicant Warburton Richard
Number 175748
Funding scheme Project funding (Div. I-III)
Research institution Departement Physik Universität Basel
Institution of higher education University of Basel - BS
Main discipline Condensed Matter Physics
Start/End 01.10.2017 - 30.09.2021
Approved amount 1'200'000.00
Show all

Keywords (6)

phononics; quantum dot; spin; photonics; van der Waals heterostructure; microcavity

Lay Summary (German)

Lead
Halbleiter bilden wichtige Komponenten der zukünftigen Quanten-Technologie, insbesondere Einzelphotonenquellen und Spin-basierte Qubits. Dieses Projekt hat das Ziel, Halbleiter-basierte Quanten-Technologie voranzutreiben.
Lay summary
Ein herkömmliches Materialsystem, GaAs, wird eingesetzt, um eine nützliche Einzelphotonenquelle zu entwerfen. Die effiziente Auskopplung der Photonen aus dem Halbleiter wird durch eine extrem miniaturisierte Cavity erreicht werden. Phononen, die Schwingungen der Atomen des Halbleitergitters, beeinflussen die Spin-Eigenschaften negativ. Ein neuer Ansatz wird verfolgt, um dieses Problem zu umgehen: das Halbleitermaterial wird auf der Nanoskala gezielt strukturiert, um Phononen bei der Dreh-Frequenz des Spins zu eliminieren. Quantenelemente in GaAs müssen relativ weit weg von der Oberfläche positioniert werden. Dies ist nicht mehr der Fall mit Graphen-artigen Halbleitern. Quantenelemente werden mit Kombinationen von zwei-dimensionalen Halbleitern definiert und erforscht mit dem Ziel, Nano-Elemente für Quantenanwendungen zu schaffen. 
Direct link to Lay Summary Last update: 10.10.2017

Responsible applicant and co-applicants

Employees

Publications

Publication
On-chip deterministic operation of quantum dots in dual-mode waveguides for a plug-and-play single-photon source
Uppu Ravitej, Eriksen Hans T., Thyrrestrup Henri, Uğurlu Aslı D., Wang Ying, Scholz Sven, Wieck Andreas D., Ludwig Arne, Löbl Matthias C., Warburton Richard J., Lodahl Peter, Midolo Leonardo (2020), On-chip deterministic operation of quantum dots in dual-mode waveguides for a plug-and-play single-photon source, in Nature Communications, 11(1), 3782-3782.
Radiative Auger process in the single-photon limit
Löbl Matthias C., Spinnler Clemens, Javadi Alisa, Zhai Liang, Nguyen Giang N., Ritzmann Julian, Midolo Leonardo, Lodahl Peter, Wieck Andreas D., Ludwig Arne, Warburton Richard J. (2020), Radiative Auger process in the single-photon limit, in Nature Nanotechnology, 15(7), 558-562.
First-Order Magnetic Phase Transition of Mobile Electrons in Monolayer MoS2
Roch Jonas G., Miserev Dmitry, Froehlicher Guillaume, Leisgang Nadine, Sponfeldner Lukas, Watanabe Kenji, Taniguchi Takashi, Klinovaja Jelena, Loss Daniel, Warburton Richard J. (2020), First-Order Magnetic Phase Transition of Mobile Electrons in Monolayer MoS2, in Physical Review Letters, 124(18), 187602-187602.
Excitons in InGaAs quantum dots without electron wetting layer states
Löbl Matthias C., Scholz Sven, Söllner Immo, Ritzmann Julian, Denneulin Thibaud, Kovács András, Kardynał Beata E., Wieck Andreas D., Ludwig Arne, Warburton Richard J. (2019), Excitons in InGaAs quantum dots without electron wetting layer states, in Communications Physics, 2(1), 93-93.
A gated quantum dot strongly coupled to an optical microcavity
Najer Daniel, Söllner Immo, Sekatski Pavel, Dolique Vincent, Löbl Matthias C., Riedel Daniel, Schott Rüdiger, Starosielec Sebastian, Valentin Sascha R., Wieck Andreas D., Sangouard Nicolas, Ludwig Arne, Warburton Richard J. (2019), A gated quantum dot strongly coupled to an optical microcavity, in Nature, 575(7784), 622-627.
Correlations between optical properties and Voronoi-cell area of quantum dots
Löbl Matthias C., Zhai Liang, Jahn Jan-Philipp, Ritzmann Julian, Huo Yongheng, Wieck Andreas D., Schmidt Oliver G., Ludwig Arne, Rastelli Armando, Warburton Richard J. (2019), Correlations between optical properties and Voronoi-cell area of quantum dots, in Physical Review B, 100(15), 155402-155402.
Spin-polarized electrons in monolayer MoS2
Roch Jonas Gaël, Froehlicher Guillaume, Leisgang Nadine, Makk Peter, Watanabe Kenji, Taniguchi Takashi, Warburton Richard John (2019), Spin-polarized electrons in monolayer MoS2, in Nature Nanotechnology, 14(5), 432-436.
Coherent Optical Control of a Quantum-Dot Spin-Qubit in a Waveguide-Based Spin-Photon Interface
Ding Dapeng, Appel Martin Hayhurst, Javadi Alisa, Zhou Xiaoyan, Löbl Matthias Christian, Söllner Immo, Schott Rüdiger, Papon Camille, Pregnolato Tommaso, Midolo Leonardo, Wieck Andreas Dirk, Ludwig Arne, Warburton Richard John, Schröder Tim, Lodahl Peter (2019), Coherent Optical Control of a Quantum-Dot Spin-Qubit in a Waveguide-Based Spin-Photon Interface, in Physical Review Applied, 11(3), 031002-031002.
Optical second harmonic generation in encapsulated single-layer InSe
Leisgang Nadine, Roch Jonas G., Froehlicher Guillaume, Hamer Matthew, Terry Daniel, Gorbachev Roman, Warburton Richard J. (2018), Optical second harmonic generation in encapsulated single-layer InSe, in AIP Advances, 8(10), 105120-105120.
Spin–photon interface and spin-controlled photon switching in a nanobeam waveguide
Javadi Alisa, Ding Dapeng, Appel Martin Hayhurst, Mahmoodian Sahand, Löbl Matthias Christian, Söllner Immo, Schott Rüdiger, Papon Camille, Pregnolato Tommaso, Stobbe Søren, Midolo Leonardo, Schröder Tim, Wieck Andreas Dirk, Ludwig Arne, Warburton Richard John, Lodahl Peter (2018), Spin–photon interface and spin-controlled photon switching in a nanobeam waveguide, in Nature Nanotechnology, 13(5), 398-403.
Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide
Thyrrestrup Henri, Kiršanskė Gabija, Le Jeannic Hanna, Pregnolato Tommaso, Zhai Liang, Raahauge Laust, Midolo Leonardo, Rotenberg Nir, Javadi Alisa, Schott Rüdiger, Wieck Andreas D., Ludwig Arne, Löbl Matthias C., Söllner Immo, Warburton Richard J., Lodahl Peter (2018), Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide, in Nano Letters, 18(3), 1801-1806.
Quantum-Confined Stark Effect in a MoS 2 Monolayer van der Waals Heterostructure
Roch Jonas G., Leisgang Nadine, Froehlicher Guillaume, Makk Peter, Watanabe Kenji, Taniguchi Takashi, Schönenberger Christian, Warburton Richard J. (2018), Quantum-Confined Stark Effect in a MoS 2 Monolayer van der Waals Heterostructure, in Nano Letters, 18(2), 1070-1074.

Collaboration

Group / person Country
Types of collaboration
Professor Peter Lodahl, Niels-Bohr Institute, University of Copenhagen Denmark (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Photonics West Talk given at a conference Laser-written coherent nitrogen-vacancy centers as building block for efficient quantum photonic devices 01.02.2020 San Francisco, United States of America Jakubczyk Tomasz;
Nanophotonics Winter School Talk given at a conference Coupling a gated quantum dot to an optical microcavity 20.01.2020 Sheffield, Great Britain and Northern Ireland Warburton Richard;
UK Quantum Dot Day 2020 Talk given at a conference Radiative Auger Process in the Single Photon Limit on a Quantum Dot 06.01.2020 Oxford, Great Britain and Northern Ireland Löbl Matthias Christian;
7th International Workshop on Engineering of Quantum Emitter Properties Poster Spin-based switching using a quantum dot in a nanophotonic waveguide 11.12.2019 Berlin, Germany Löbl Matthias Christian; Warburton Richard;
7th International Workshop on Engineering of Quantum Emitter Properties Poster Tuning the mode-splitting of a semiconductor microcavity with uniaxial stress 11.12.2019 Berlin, Germany Warburton Richard;
7th International Workshop on Engineering of Quantum Emitter Properties Talk given at a conference Quantum dot cavity-QED with a tunable microcavity 11.12.2019 Berlin, Germany Warburton Richard;
International Conference on Integrated Quantum Photonics (ICIQP) Talk given at a conference Coupling a charge-tunable quantum dot to a cavity mode with cooperativity above one hundred 15.10.2019 Paris, France Löbl Matthias Christian; Warburton Richard;
OECS 2019 Talk given at a conference Excitons in InGaAsQuantum Dots without Electron Wetting Layer States 16.09.2019 St. Petersburg, Russia Löbl Matthias Christian;
Flatlands Beyond Graphene 2019 Poster Spin-Polarized Electrons in Monolayer MoS2 02.09.2019 Toulouse, France Roch Jonas Gael;
IV International Conference on Metamaterials and Nanophotonics Talk given at a conference Spin-Polarized Electrons in Monolayer MoS2 15.07.2019 St. Petersburg, Russia Roch Jonas Gael;
Quantum Designer Physics Talk given at a conference Spontaneous spin-polarisation of a two-dimensional electron gas in monolayer MoS2 01.07.2019 San Sebastian, Spain Warburton Richard;
4th International Conference on Physics of 2D Materials Talk given at a conference Spin-Polarized Electrons in Monolayer MoS2 11.06.2019 Hongzhou, China Roch Jonas Gael;
48th International School & Conference on the Physics of Semiconductors Poster Optical coherence of diamond nitrogen-vacancy centres for applications in open microcavities 10.06.2019 Szczyrk, Poland Jakubczyk Tomasz;
International Conference on Terahertz Emission, Metamaterials and Nanophotonics Talk given at a conference A quantum dot exciton deep in the strong coupling regime of cavity-QED 27.05.2019 Lecce, Italy Warburton Richard;
Workshop: NanoWorld 2019 Talk given at a conference Development of optically coherent NV- centers for applications in photonic microcavities 11.02.2019 Zdunowo, Poland Jakubczyk Tomasz;
UK Quantum Dot Day 2019 Talk given at a conference Excitons in InGaAsQuantum Dots without Electron Wetting Layer States 10.01.2019 Oxford, Great Britain and Northern Ireland Löbl Matthias Christian;
6th International workshop on Engineering of Quantum Emitter Properties (EQEP) Talk given at a conference A quantum dot exciton deep in the strong coupling regime of cavity-QED 05.12.2018 Rome, Italy Löbl Matthias Christian; Warburton Richard;
Nonlinear Optics and Excitation Kinetics in Semiconductors Talk given at a conference A quantum dot exciton deep in the strong coupling regime of cavity-QED 23.09.2018 Berlin, Germany Warburton Richard;
Hybrid Approaches to Quantum-Information Processing Talk given at a conference A charge-tunable quantum dot deep in the strong coupling regime of cavity-QED 18.09.2018 Copenhagen, Denmark Warburton Richard;
4th School and Conference on Spin-Based Quantum Information Processing Talk given at a conference Towards an efficient spin-photon interface 10.09.2018 Konstanz, Germany Warburton Richard;
4th Conference on Spin-Based Quantum Information Processing Poster Excitons in InGaAsQuantum Dots without Electron Wetting Layer States 10.09.2018 Konstanz, Germany Löbl Matthias Christian;
IEEE Summer Topicals 2018 Talk given at a conference A charge-tunable quantum dot deep in the strong coupling regime of cavity QED 07.09.2018 Hawaii, United States of America Löbl Matthias Christian; Warburton Richard; Petrak Benjamin;
Flatlands Beyond Graphene 2018 Poster Polarizable Excitons in TMDC-based van der Waals heterostructures 03.09.2018 Leipzig, Germany Roch Jonas Gael;
International Conference on the Physics of Semiconductors Talk given at a conference InGaAs Quantum Dots without Wetting Layer States for Electrons 29.07.2018 Montpellier, France Löbl Matthias Christian;
International Conference on the Physics of Semiconductors Talk given at a conference Spin-polarized Electrons in Monolayer MoS2 29.07.2018 Montpellier, France Roch Jonas Gael;
Quantum Dots 2018 Talk given at a conference A charge-tunable quantum dot deep in the strong coupling regime of cavity QED 24.06.2018 Toronto, Canada Warburton Richard;
Graphene & Co.: Thematic school 2018 "Frontier Research in 2D Materials" Poster Quantum confined Stark effect in a MoS2 monolayer van der Waals heterostructure 02.04.2018 Cargèse, Corsica, France Roch Jonas Gael;
5th International Workshop on the Optical Properties of Nanostructures Talk given at a conference Impact of environment on dynamics of exciton complexes in a WS2 monolayer 14.02.2018 Münster, Germany Jakubczyk Tomasz;
Institute of Physics Quantum Dot Day 2018 Talk given at a conference Resonant driving of a single quantum dot embedded in a mechanical oscillator 24.01.2018 Sheffield, Great Britain and Northern Ireland Warburton Richard;


Communication with the public

Communication Title Media Place Year
Talks/events/exhibitions Quantum Light German-speaking Switzerland 2020

Awards

Title Year
Marie Sklodowska-Curie Research Fellowship 2020
Marie Sklodowska-Curie Research Fellowship 2018

Associated projects

Number Title Start Funding scheme
156637 Electro-optics of semiconductor nanostructures 01.10.2014 Project funding (Div. I-III)
156637 Electro-optics of semiconductor nanostructures 01.10.2014 Project funding (Div. I-III)
144979 Mode-locked laser for fast quantum state manipulation 01.01.2013 R'EQUIP
132313 Electro-optics of semiconductor nanostructures 01.04.2011 Project funding (Div. I-III)

Abstract

Quantum communication and quantum computation offer compelling advantages over their classical counterparts. Quantum communication over short distances is a reality; over long distances it is not. A fully-fledged quantum computer remains a very distant prospect but its potential to solve hard problems in chemistry and materials science make it an extremely important goal. Application of these quantum concepts with semiconductors offers a route to creating small, fast and scalable devices. However, while the materials have powerful advantages they are also complex with several inter-connected sub-systems (electronic charge, electronic spin, nuclear spins, phonons, photons). The physics of these materials, particularly with structure on the nano-scale, needs to be understood. The overriding goal of this project is to make leading contributions to the development of semiconductor-based quantum technology. There are three inter-linked strands, development of a quantum device, an investigation into some of the key physics, and an exploration of new materials.Tunable quantum dots in a tunable micro-cavityA self-assembled quantum dot has emerged as a leading contender for a source of single photons. The photons should be bright, pure and indistinguishable. Quantum dots far beneath the surface of the semiconductor emit pure and highly indistinguishable photons but the brightness is poor on account of the difficulties of extracting photons from the high-index semiconductor. High-brightness devices rely on nano-fabrication. In many cases, the nano-fabrication is both complex and invasive such that device yield is poor, and the photon purity and indistinguishable suffer. The proposal here is to solve this conundrum by embedding electrically-contacted quantum dots in a vertical micro-cavity: tunable quantum dots in a tunable micro-cavity. Nano-fabrication is bypassed: the quantum dots in the device are guaranteed to have ultra-high quality; contacting the device is trivial. The mirrors are built with known, ultra-high quality materials and techniques. Calculations show that two ideal limits can be reached, optimized photon collection and strong coupling. Remarkably, only a modest micro-cavity finesse (~1,000) is required for ultra-high photon extraction. These ideas will be implemented paying attention to all the crucial details which have hindered progress in the past. The technology will be simplified in order to create a device. An efficient spin-photon interface will be built by trapping a single spin (either electron or hole) in the quantum dot. Spin-photon entanglement protocols will be applied, and, on success, entanglement swapping operations to create high-rate spin-spin entanglements.Phononics with an embedded quantum dotThe electron-phonon interaction results in spin dephasing in a semiconductor. This is not inevitable. The phonon modes and their occupations can be controlled, a process of "phononics". Compared to "photonics", phononics has received almost no attention in the context of quantum dots. A phononic crystal will be created with a gap in the density of states in the few-GHz regime. When the electron spin Zeeman frequency lies in this gap, phonon-related spin relaxation should be suppressed. Conversely, the spin relaxation rate will be used to probe the local phonon density of states. A localized high-Q phonon mode will be created by using a phononic crystal to shield a small element from the bulk phonon modes. An embedded quantum dot will couple to the localized phonon mode. The aim is to reach the resolved sideband regime which allows the phonon number to be controlled, possibly to the phonon ground state, by optically driving the quantum dot.Quantum photonics with 2D semiconductorsThe only known way of "wiring up" self-assembled quantum dots is via photons. A "circuit" of self-assembled quantum dots does not exist largely because the quantum dots must be located deep below the surface. A tantalizing prospect is to create a quantum dot circuit with a two-dimensional semiconductor where, by its very nature, all the action takes place on or very close to the surface. Only the most rudimentary quantum dot-like elements exist in this materials class, for instance confined excitons in WSe2. The aim here is to create quantum dots in pre-defined locations with an electrical technique.
-