Project

Back to overview

Resistance and long-term resilience of the forest soil microbiome to mechanical disturbance

English title Resistance and long-term resilience of the forest soil microbiome to mechanical disturbance
Applicant Hartmann Martin
Number 172942
Funding scheme Project funding (Div. I-III)
Research institution Sustainable Agroecosystems ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Environmental Research
Start/End 01.09.2017 - 31.08.2021
Approved amount 333'050.00
Show all

All Disciplines (6)

Discipline
Environmental Research
Ecology
Molecular Biology
Agricultural and Forestry Sciences
Experimental Microbiology
Pedology

Keywords (12)

timber harvesting; soil compaction; ecosystem functioning; resilience and restoration; microbiome; microbial ecology; biogeochemical cycling; functional potential; metabarcoding; metagenomics; metatranscriptomics; bioinformatics

Lay Summary (German)

Lead
Ein fruchtbarer Boden ist eine wichtige Voraussetzung für eine nachhaltige Waldbewirtschaftung. Mechanische Belastungen des Bodens durch Holzerntemaschinen können jedoch diese Fruchtbarkeit beeinträchtigen und die Bodenbiodiversität langfristig schädigen. Das Projekt untersucht den Einfluss von mechanischer Belastung auf die Biodiversität und Funktionen im Boden.
Lay summary

Inhalt und Ziele des Forschungsprojektes

In den letzten Jahren sind Holzerntemaschinen produktiver und damit auch schwerer geworden. Mit dieser Entwicklung einhergehend steigt das Risiko schädlicher Veränderungen der Bodenstruktur mit negativen Konsequenzen für die Bodenorganismen. Es besteht ein Konsens, dass die hohen Belastungen durch Erntefahrzeuge Bodenverformungen mit noch nicht genau abschätzbaren ökologischen Folgen bewirken können.

Die Bodenlebewesen als schützenswerte Lebensgemeinschaft und Garanten für die ungestörte Funktionalität der Böden stehen im Zentrum des Bodenschutzes. Dies gilt insbesondere für Mikroorganismen, welche unverzichtbar sind für die Funktionalität von biogeochemischen Stoffkreisläufen im Boden. Das Projekt untersucht die Auswirkungen der mechanischen Belastung während der Holzernte auf die Vielfalt und Funktionen der Bodenmikroorganismen. In einer ersten Phase werden sowohl die unmittelbare Einwirkung auf die Mikroorganismen als auch deren langfristigen Erholung in Langzeit-Feldversuchen untersucht. In einer zweiten Phase werden spezifische mikrobielle Funktionen in simulierten Laborexperimenten studiert.

 

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Das durch die Studie erlangte Wissen wird helfen Strukturschäden in Waldböden zu beurteilen sowie Richtlinien aufzustellen, ab wann ein Bodenschaden problematisch ist. Diese Information ist wichtig um die Schweizer Wälder in Zukunft nachhaltig zu bewirtschaften und den Wald als sozio-ökonomischen Lebensraum zu bewahren.

Direct link to Lay Summary Last update: 05.05.2017

Responsible applicant and co-applicants

Employees

Name Institute

Project partner

Collaboration

Group / person Country
Types of collaboration
INRAE Dijon, Functional and Evolutionary Microbial Ecology for Sustainable Agrosystems, Laurent Phil France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Agroscope, Molecular Ecology, Franco Widmer Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Agroscope, Soil Quality and Soil Use, Thomas Keller Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Rigi Workshop 2020: Ecosystems under pressure Poster Resistance and resilience of soil microbiome to mechanical disturbance under different agricultural management regimes 26.01.2020 Rigi, Switzerland Hartmann Martin; Longepierre Manon;
4th Thünen Symposium on Soil Metagenomics Talk given at a conference Resistance and resilience of the soil microbiome to mechanical compaction 11.12.2019 Braunschweig, Germany Hartmann Martin;
Symposium on Above- and Below-Ground Biodiversity for Sustainable Ecosystems Poster Resistance and Resilience of Soil Microbiome to Mechanical Compaction under Different Agricultural Management Regimes 14.11.2019 Zürich, Switzerland Hartmann Martin; Longepierre Manon;
17th International Symposium on Microbial Ecology (ISME17) Poster Resistance and resilience of the soil microbiome to mechanical compaction under different agricultural management regimes 12.08.2018 Leipzig, Germany Longepierre Manon; Hartmann Martin;
PhD symposium Poster Resistance and long-term resilience of the forest soil microbiome to mechanical disturbance 25.09.2017 Einsiedeln, Switzerland Longepierre Manon;


Knowledge transfer events



Self-organised

Title Date Place
OLMA 2019 10.10.2019 St. Gallen, Switzerland

Communication with the public

Communication Title Media Place Year
Talks/events/exhibitions OLMA 2019 German-speaking Switzerland 2019

Abstract

Background: Forests represent important renewable economic resources and play a key role in global carbon and nitrogen cycling, greenhouse gas turnover, and biodiversity. The key to sustainable forest management is proper stewardship of soil. Soil provides fundamental ecosystem services including decomposition and transformation of organic materials and toxic compounds, nutrient cycling, water regulation, physical substrate for plants, and control of pests and disease. Soil compaction has been recognized as a major disturbance associated with forest management, but we lack a fundamental mechanistic understanding how these disturbances affect soil biodiversity and associated ecosystem functions. At the systems level, microbial metabolism contributes to soil health and productivity. There is increasing evidence that logging operations alter the soil microbiome, which potentially results in loss of ecosystem functions and forest productivity. In order to predict the ecological consequences of soil compaction and the capacity of the system to recover, we need to assess resistance and long-term resilience of the soil microbiome during such perturbations. Novel molecular technologies offer an unprecedented opportunity to assess the structure and functional potential of the complex soil microbiome.Hypotheses: Soil compaction changes various physicochemical properties including porosity, water conductivity, and oxygen availability, thereby significantly altering structure and function of the soil microbiome. Compaction-associated changes in redox potentials will alter abundance and structure of key functional groups involved in nitrogen- and carbon cycling. Populations adapted to low oxygen availability such as methanogens and denitrifiers will thrive in compacted soils, whereas aerobically respiring populations such as methanotrophs and nitrifiers will be negatively affected. These compositional shifts stimulate processes that result in increased production of greenhouse gases such as methane and nitrous oxide. Below a certain level of compaction, the microbiome will be resilient such that diversity and functional potential will return to their original state over time; however, above a critical threshold, resilience does not take place and important soil functions are lost.Objectives: The specific aims of the project are (1) to characterize and quantify the impact of logging-induced soil compaction on physicochemical properties, soil functions, microbial diversity and functional potential; (2) to assess the capacity of the microbiome and associated functions to recover from compaction in the long-term, and (3) assess, if specific ecosystem services such as litter decomposition are reduced or impaired.Methods: The project will make use of two long-term field experiments established by the Swiss Federal Research Institute WSL in 2007 and 2008 to explore the relationships between soil compaction, losses of vital soil functions and the microbiome. Soils were compacted at different severities by operations with heavy logging equipment and samples were collected regularly reaching ten years in 2017/18. Various novel molecular genetic approaches such as metabarcoding, metagenomics, and metatranscriptomics coupled to measurements of specific processes such as greenhouse gas production, nitrogen cycling potentials, or litter decomposition will be used to measure shifts in diversity and function of the soil microbiome. Significance: The unique field experiments coupled to controlled microcosm experiments in the laboratory offer an unprecedented opportunity to obtain a deep mechanistic understanding of the resistance and long-term resilience of the soil microbiome and associated functions in managed forest ecosystems. The project will help to better predict the extent of soil damage in forest ecosystems, to evaluate the potential for resilience, and ultimately, to identify threshold values that minimize damage and guarantee recovery of the system. Therefore, the proposed project will improve our basic understanding of the microbial processes in compacted soils as well as provide recommendations to the practitioners for the prevention and mitigation of physically damaged sites.
-