Project

Back to overview

Key problems of heat and mass transfer in the earth's crust

Applicant Driesner Thomas
Number 172851
Funding scheme Project funding (Div. I-III)
Research institution Institut für Geochemie und Petrologie ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Geochemistry
Start/End 01.05.2017 - 30.04.2021
Approved amount 889'729.00
Show all

All Disciplines (4)

Discipline
Geochemistry
Other disciplines of Earth Sciences
Geology
Geophysics

Keywords (10)

fluid flow; molecular modelling; experimental geochemistry; geothermal; supercritical; thermodynamics; numerical simulation; heat and mass transfer; hydrothermal; ore deposits

Lay Summary (German)

Lead
Wasserströmungen in der Erdkruste spielen eine Schlüsselrolle im Wärmehaushalt der Erde und bei der Entstehung von geothermischen Resourcen und Erzlagerstätten. Jedoch sind insbesondere Strömungsprozesse in der tieferen Erdkruste, weit unterhalb des normalen Grundwassers, sowie sogenannte „überkritische“ Strömungen in vulkanischen Geothermalfeldern praktisch unverstanden.
Lay summary

Wasserströmungen in der Erdkruste spielen eine Schlüsselrolle im Wärmehaushalt der Erde und bei der Entstehung von geothermischen Resourcen und Erzlagerstätten. Jedoch sind insbesondere Strömungsprozesse in der tieferen Erdkruste, weit unterhalb des normalen Grundwassers, sowie sogenannte „überkritische“ Strömungen in vulkanischen Geothermalfeldern praktisch unverstanden.

Mit Hilfe von akkuraten Computersimulationen und Experimenten wollen wir ein quantitatives Verständnis dieser Strömungsprozesse zu erreichen. Dabei legen wir zwei Schwerpunkte:

  • Heisse Strömungen in geklüfteten (aber ansonsten undurchlässigen) Kristallingesteinen des tieferen Untergrundes. Dort bestimmen wechselseitige Abhängigkeiten von Wasserströmung, Gesteinsdeformation, Temperatur, und chemischen Reaktionen zwischen Wasser und Gestein, ob und wie intensiv Wasser fliessen kann.
  • Strömungen extrem heissen, sogenannt „überkritischen“ Wassers in der Nähe von Magmakörpern. In Zusammenarbeit mit dem isländischen Tiefbohrprogramm IDDP werten wir dazu die Daten aus einem neuen, 5 km tiefen Bohrloch in einem dortigen Vulkangebiet mit Computersimulationen aus.
Neben ungelösten Fragen der Grundlagenforschung hat unser Projekt starke Implikationen für Anwendungen. Geklüftete Kristallingesteine des tieferen Untergrundes sind das bevorzugte Ziel geothermischer Exploration in der Schweiz. Unsere Arbeit wird besseren Einblick erlauben, was die besten geologischen Bedingungen für Geothermie in der Schweiz sind. Der Projektteil in Island steht in unmittelbarem Zusammenhang mit der Entwicklung heisserer und damit effizienterer Geothermie.
Direct link to Lay Summary Last update: 12.04.2017

Responsible applicant and co-applicants

Employees

Project partner

Publications

Publication
An advanced reactive transport simulation scheme for hydrothermal systems modelling
Yapparova Alina, Miron George D., Kulik Dmitrii A., Kosakowski Georg, Driesner Thomas (2019), An advanced reactive transport simulation scheme for hydrothermal systems modelling, in GEOTHERMICS, 78, 138-153.
Heat and Fluid Transport Induced by Convective Fluid Circulation Within a Fracture or Fault
Patterson J. W., Driesner T., Matthai S., Tomlinson R. (2018), Heat and Fluid Transport Induced by Convective Fluid Circulation Within a Fracture or Fault, in JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 123(4), 2658-2673.
Self-Organizing Fluid Convection Patterns in an en Echelon Fault Array
Patterson James W., Driesner Thomas, Matthai Stephan K. (2018), Self-Organizing Fluid Convection Patterns in an en Echelon Fault Array, in GEOPHYSICAL RESEARCH LETTERS, 45(10), 4799-4808.

Collaboration

Group / person Country
Types of collaboration
Reykjavik Energy Iceland (Europe)
- Industry/business/other use-inspired collaboration
University of Iceland Iceland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Equinor Norway (Europe)
- Industry/business/other use-inspired collaboration

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Bryan Lovell Meeting 2019 Talk given at a conference Geoscience Insights for Developing Superhot Icelandic Geothermal Resources 21.01.2019 London, Great Britain and Northern Ireland Driesner Thomas;
AGU Fall Meeting Talk given at a conference Modeling recharge and convective downward migration of fractures in low-temperature geothermal systems 10.12.2018 Washington, United States of America Patterson James; Driesner Thomas;
SCCER-SoE Annual Conference Poster Modelling two-phase flow with boiling and gas partitioning 13.09.2018 Horw, Switzerland Yapparova Alina; Driesner Thomas;
SCCER-SoE Annual Conference Talk given at a conference SCCER international collaboration - the example of supercritical geothermal resources in Iceland 13.09.2018 Horw, Switzerland Driesner Thomas;
SCCER-SoE Annual Conference Poster CSMP++GEM for reactive transport modelling with solid solutions 14.09.2017 Birmensdorf, Switzerland Yapparova Alina; Driesner Thomas;
SCCER-SoE Annual Conference Poster Numerical Modeling of Natural Convection in Fractured Media 14.09.2017 Birmensdorf, Switzerland Driesner Thomas; Patterson James;
Goldschmidt Conference Talk given at a conference Reactive Transport Modelling of Alteration Assemblages at Butte Magmatic-Hydrothermal System 13.08.2017 Paris, France Yapparova Alina; Driesner Thomas;


Knowledge transfer events

Active participation

Title Type of contribution Date Place Persons involved
Workshop on supercritical geothermal well models Workshop 05.09.2019 Trondheim, Norway Driesner Thomas;
IPGT assembly Talk 18.06.2019 Lausanne, Switzerland Driesner Thomas;
Workshop on supercritical geothermal resources Workshop 10.09.2018 Trondheim, Norway Driesner Thomas;


Self-organised

Title Date Place
IDDP-2 Fluid workshop 11.07.2018 ETH Zuerich, Switzerland

Communication with the public

Communication Title Media Place Year
Talks/events/exhibitions “Superheisse” Geothermie in Island German-speaking Switzerland 2019

Associated projects

Number Title Start Funding scheme
160757 COTHERM2 - COmbined hydrological, geochemical and geophysical modelling of geotTHERMal systems II. 01.09.2015 Sinergia
146651 Mineral resources: Physical dynamics driving chemical enrichment of rare metals 01.04.2013 Project funding (Div. I-III)
153971 Modelling permeability and stimulation for deep heat mining 01.11.2014 NRP 70 Energy Turnaround
160757 COTHERM2 - COmbined hydrological, geochemical and geophysical modelling of geotTHERMal systems II. 01.09.2015 Sinergia

Abstract

Mass and heat transport by fluid flow are arguably one of the most dynamic and important upper crustal geologic processes, accounting for all geothermal resources and hydrothermal ore deposits (i.e, the prime resources of Cu, Au, Mo, Pb, Zn, Ag etc.), for an estimated >25% of the global earth’s surface heat flow, and are key actors in driving seismicity. Intense research has focused on these processes and many facets are considered well-understood. However, new paradigms raised new questions, and some key problems have remained unresolved. I propose that four subprojects will study, by means of numerical simulation and experiment, some of these problems:1.The role of fractures in large-scale heat and mass transport in crystalline basement. Crystalline basement rocks globally form large parts of the earth’s crust but are nominally impermeable. Heat and mass transfer happen in fracture networks, which are targets for geothermal exploration in Switzerland and elsewhere, and, at the interface to overlying sedimentary basins, may play a decisive role in the formation of major ore deposits of U, Pb, Zn, and other metals. The systematics of fluid flow in these fracture networks and the resulting rates, magnitudes and localization of heat and mass transfer are poorly known as is their role in global crustal heat flow. Key questions of this will be addressed in a 12 month extension to an ongoing PhD project.2.The dynamic nature of permeability in the crust. Recent research shaped the paradigm that permeability below the uppermost sedimentary layers of the crust is a dynamic property that responds to interacting thermo-hydro-mechanical-geochemical processes. Namely, elastic and failure response of fracture permeability to stress and fluid pressure as well as clogging of fractures due to mineral precipitation are believed to be key elements in this. A 48 months PhD project will quantify these effects, provide the first in-depth understanding of the global permeability decrease with depth, and extend the findings of subproject 1 to analyze how large-scale heat and mass transfer is affected and possibly controlled by dynamic permeability. 3.Heat and mass transfer in the deep parts of magma-driven geothermal systems. Subproject 3 will address highly focused heat and mass transfer in magma-driven geothermal systems. A one-of-a-kind opportunity has arisen with the Iceland Deep Drilling Project now drilling into the Reykjanes system’s deep parts to 5 km depth. We are the only group world-wide who can rigorously simulate heat and mass transfer in such a saline system, and a 24 months postdoctoral project will quantify these processes at depth using data from the new well. We expect fundamental new insights into how fluid phase relations, fracture flow, extensional tectonics, style of magma intrusion etc. control heat and mass transfer and the occurrence of “supercritical” geothermal resources. 4.Supercritical (geo)fluid thermodynamics. Complementing the Reykjanes subproject, a 48 months PhD project will start closing the decades-old gap of modeling the thermodynamics of “supercritical” geo-fluids. Existing theoretical models are have been unable to provide consistent thermodynamic properties of solutes over the whole range of temperature-pressure conditions relevant for important processes such as magmatic-hydrothermal ore formation, mid-ocean ridge hydrothermal systems or the deep parts of geothermal systems, i.e., we are unable to quantitatively assess some of the most important chemical fluid-rock interaction processes. Building on new theoretical progress that we recently made the student will perform a series of experiments and accompanying molecular modelling studies to lay the foundation for a comprehensive thermodynamic model.
-