Project

Back to overview

Physical Mechanisms Underlying the Structure and Rheology of Living Materials

English title Physical Mechanisms Underlying the Structure and Rheology of Living Materials
Applicant Dufresne Eric
Number 172824
Funding scheme Project funding (Div. I-III)
Research institution Departement Materialwissenschaft ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Material Sciences
Start/End 01.04.2017 - 31.03.2021
Approved amount 972'200.00
Show all

All Disciplines (2)

Discipline
Material Sciences
Condensed Matter Physics

Keywords (4)

Self-assembly; Morphogenesis; Nanostructures; Optical properties

Lay Summary (German)

Lead
Lebewesen entwickelten eine ganze Reihe von Materialien mit einer erstaunlichen Spanne an Eigenschaften. Durch das Studieren der Biologie kann man viel über Materialien lernen. Es ist z.B. bekannt, dass einige Tiere komplexe Strukturen zur Farbgebung auf der Nanometer-Skala produzieren. Wie genau sie dies bewerkstelligen, ist für Ingenieure und Wissenschaftler nach wie vor ein Rätsel. In diesem Projekt versuchen wir, die physikalischen Mechanismen zur Herstellung dieser winzigen Strukturen zu entschlüsseln.
Lay summary

Mithilfe eines besonderen Schaumes erscheinen viele Vögel in blauer oder grüner Farbe. Man kann ihn sich wie das Innere eines Brotlaibes vorstellen, nur dass die Löcher alle gleich gross und verschwindend klein sind. Wenn die Löcher von ganz spezifischer Grösse sind, kann das Material blau oder grün erscheinen. Wir wissen nicht, wie Vögel die Grösse dieser Löcher kontrollieren. Wie machen sie diese so klein? Wie machen sie es, dass alle Löcher gleich gross sind?

Auch Schmetterlinge kreieren Farbe mithilfe eines Schaumes. Während die Bläschen im Schaum der Vogelfedern zufällig verteilt sind, schaffen es Schmetterlinge, diese sehr regelmässig anzuordnen. Was kontrolliert die Anordnung von Luftbläschen und umliegendem Feststoff? Wir fanden heraus, dass die Zellmembran diese Ordnung vorgibt. Normalerweise nimmt die Zellmembran eine einfache Form an, z.B. die einer Kugel ohne Löcher. In gewissen Schmetterlingen jedoch faltet sich die Membran in eine komplexe dreidimensionale Struktur mit sehr vielen Löchern. Wie schaffen Schmetterlinge das?

Wir erwarten, dass uns Antworten auf diese Fragen nicht nur etwas über das Leben selber lehren, sondern auch neue Strategien und Prozesse aufzeigen, die Wissenschaftler verwenden können, um neue nützliche Materialien herzustellen.

Direct link to Lay Summary Last update: 13.04.2017

Responsible applicant and co-applicants

Employees

Publications

Publication
Liquid-Liquid Phase Separation in an Elastic Network
Style Robert W., Sai Tianqi, Fanelli Nicoló, Ijavi Mahdiye, Smith-Mannschott Katrina, Xu Qin, Wilen Lawrence A., Dufresne Eric R. (2018), Liquid-Liquid Phase Separation in an Elastic Network, in Physical Review X, 8(1), 011028-011028.

Collaboration

Group / person Country
Types of collaboration
Allain Lab, ETH Zürich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Laboratory of Biomolecular Research, PSI Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Protein Engineering and Evolution, OIST, Okinawa Japan (Asia)
- in-depth/constructive exchanges on approaches, methods or results
- Exchange of personnel
Arosio Group, ETH Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Barral Group, ETH Zürich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Arbeitsgruppe Biologische Physik, Universität Bayreuth Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Soft Living Matter Group, Princeton University United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Exchange of personnel

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Biomembrane days 2019 Poster Experimental Phase Diagram for the wrapping of microparticles by lipid membranes 11.12.2019 Freie Universität Berlin, Germany Spanke Hendrik;
GRC and GRS on Soft Condensed Matter Physics Poster The Polymer Network of the Cytoskeleton affects Intracellular Phase Separation 10.08.2019 New London, United States of America Dufresne Eric; Boeddeker Thomas;
Materials and Processes, Graduate Symposium 2019 Talk given at a conference Dynamics of Membrane Wrapping of Microparticles 03.07.2019 ETH Zurich, Switzerland Spanke Hendrik;
International Soft Matter Conference 2019 Talk given at a conference Dynamics of Membrane Wrapping of Microparticles 03.06.2019 Edinburgh, Great Britain and Northern Ireland Dufresne Eric; Spanke Hendrik;
International Soft Matter Conference 2019 Poster Does actin guide Intracellular Phase Separation 03.06.2019 Edinburgh, Great Britain and Northern Ireland Boeddeker Thomas; Dufresne Eric;
Swiss Soft Days 24 Talk given at a conference Dynamics of Membrane Wrapping of Microparticles 22.03.2019 AMI, Fribourg, Switzerland Spanke Hendrik;


Communication with the public

Communication Title Media Place Year
Other activities Outreach sessions for visiting students from the Freies Gymnasium in Zurich German-speaking Switzerland 2019

Associated projects

Number Title Start Funding scheme
170745 Coherent Anti-Stokes Raman Scattering (CARS) applied to complex fluid-fluid interfaces. 01.05.2017 R'EQUIP

Abstract

Living organisms precisely control the structure and properties of their constituent materials. While much work has focused on the development of structure at the molecular and organismal scales, much less is known about how organisms regulate the properties of their constituent materials through the control of structure at intermediate scales. We aim to reveal some novel physical mechanisms which organisms use to control the structure and properties of materials. The proposed work addresses fundamental questions in materials science, motivated by biology:1.How can living cells control the structure and rheology of dense protein suspensions? 2.How can cells control the geometry of lipid bilayers?The proposed work focuses on \emph{in vitro} studies of biological and engineered materials designed to reveal the essential physics behind these questions. These questions have evolved from our own experiments with living organisms, including bacteria, bees, beetles, butterflies, and birds.The intellectual products of the proposed work will deepen our understanding of living systems while inspiring new approaches to control the structure and properties of soft materials. Furthermore, it will advance our understanding of the the physics of soft matter. It will reveal how distributed free energy consumption within a material, or \emph{activity}, can impact the rheology of dense suspensions and how the adsorption and self-assembly of curved particles can be used to fold membranes into elaborate three-dimensional structures.
-