Back to overview

Climate and Environmental Physics: Pleistocene Earth System Evolution (pleistoCEP)

English title Climate and Environmental Physics: Pleistocene Earth System Evolution (pleistoCEP)
Applicant Stocker Thomas
Number 172745
Funding scheme Project funding (Div. I-III)
Research institution Klima- und Umweltphysik Physikalisches Institut Universität Bern
Institution of higher education University of Berne - BE
Main discipline Other disciplines of Physics
Start/End 01.04.2017 - 31.03.2021
Approved amount 1'600'000.00
Show all

All Disciplines (4)

Other disciplines of Physics
Other disciplines of Environmental Sciences
Climatology. Atmospherical Chemistry, Aeronomy

Keywords (8)

climate dynamics; ice core analysis; climate modelling; paleoclimate modelling; climate change projections; polar drilling technology; greenhouse gases; paleoceanographic tracer modeling

Lay Summary (German)

Klimaprozesse während den letzten 1.5 Millionen Jahren sollen mit einer Kombination von Klimamodellen, und Messungen der Treibhausgaskonzentrationen an polaren Eisbohrkernen besser verstanden werden.
Lay summary

Prozesse im Ozean, auf dem Land und in der Atmosphäre prägen, zusammen mit Variationen der Konzentrationen der wichtigsten Treibhausgase (CO2, Methan und Lachgas) das Klima der letzten 1.5 Millionen Jahre. Zunächst soll die Energiebilanz der Erde durch besser aufgelöste Rekonstruktionen von CO2, CH4 und N2O aus polaren Eisbohrkernen verfeinert werden. Schnellbohrungen in der Antarktis sollen bei der Wahl des Bohrorts der nächsten Tiefbohrung in der Antarktis Informationen über das maximale Alter des Eises liefern. Der Schnellbohrer RADIX wird in diesem Projekt weiterentwickelt. Das Bern3D Modell wird mit der Kopplung einer Landeiskomponente erweitert, so dass Simulationen über mehrere 100'000 Jahre möglich werden und quantitative Informationen zum Verständnis der Eiszeit-Zyklen liefern. Dabei werden neue paläozeanographische Spurenstoffe (Nd und Pa/Th) sowie die Edelgaskonzentrationen explizit simuliert und mit Paläoklimadaten aus verschiedenen Archiven verglichen. Für die Fragestellung von natürlicher Klimavariabilität der letzten 3500 Jahre und der kommenden 300 Jahre wird ein vollständiges 3-dimensionale Klimamodell verwendet (CESM2). Dabei berücksichtigen wir die neusten Rekonstruktionen der Vulkanaktivität und fokussieren auf Prozesse in der Nordhemisphäre.

Direct link to Lay Summary Last update: 05.04.2017

Responsible applicant and co-applicants


Project partner

Associated projects

Number Title Start Funding scheme
147659 Future and Past Solar Influence on the Terrestrial Climate II 01.01.2014 Sinergia
164190 EGRIP: The Swiss Contribution 01.04.2016 Research Infrastructure
159563 Climate and Environmental Physics 01.04.2015 Project funding (Div. I-III)


This project explores Pleistocene climate processes using a combined experimental and modelling approach. First, new greenhouse gas (GHG) concentration measurements on polar ice cores in sub-millennial resolution before 150,000 years will permit the identification of climate-carbon cycle processes during phases of large climate change. Leads and lags of GHGs with respect to climate change and interhemispheric coupling will be determined. The GHG radiative forcing will be better constrained with these new data. The project also includes a component of technological development: for our rapid access ice core drill RADIX we plan to design and construct a dust logger that will permit to count the sequence of ice ages in a bore hole. This unique in situ age determination of various Antarctic sites will be an important contribution by the University of Bern to the next European deep drilling project in Antarctica (Beyond EPICA: Oldest ICE) which aims at producing an ice core that covers the past 1.5 million years. Second with our Earth System Model of Intermediate Complexity, the Bern3D multi-tracer model, and with the comprehen¬sive Earth System Model CESM2 we will explore physical climate processes over the past 1.5 million years, and natural and forced climate variability on time scales from years to many millennia, respectively. To make progress in understanding ice age processes we propose a significant upgrade of the Bern3D model by coupling it to an ice sheet model and calibrating the coupled model for climate states of today, the last glacial maximum (LGM), the past Interglacial and others. The cost-efficiency of the model permits us to use the model for the simulation of entire glacial-interglacial cycles, and the large ocean tracer palette including Pa, Th, Nd, 13C, 14C, Be, and noble gases, enable the application of the Bern3D to many paleoclimatic problems: the stability of the atmosphere-ocean system and millennial changes during the ice ages, competing hypotheses explaining the Mid Pleistocene Transition, and noble gases as new tracers to reconstruct variations in ocean heat content and in the Earth's energy balance. The Bern3D model will also be used for massive ensemble simulation of the future to study the implications of climate targets such as the 1.5°C and 2°C targets of the Paris Agreement. Our model will produce new policy-relevant information through a probabilistic approach, consideration of multiple climate system targets, and various CO2 reduction scenarios. Simulations with the CESM2 model from 3500 years before present to the year 2300 in a seamless manner allows us to investigate the relative influence of natural variations, orbital and volcanic forcing on, e.g., modes of variability and extreme events. A new record of volcanic forcing will be used in our simulations. We will focus on a critical assessment of paleoclimate proxies in order to enhance the quantitative understanding and interpretation of them. Our simulations will make unique contributions to the international efforts of both PMIP4 and CMIP6, the modelling intercomparison projects addressing the past and the future, respectively.