Project

Back to overview

Many Atom Entanglement in Crystals?

English title Many Atom Entanglement in Crystals?
Applicant Gisin Nicolas
Number 172590
Funding scheme Project funding (Div. I-III)
Research institution GAP-Optique Université de Genève
Institution of higher education University of Geneva - GE
Main discipline Other disciplines of Physics
Start/End 01.06.2017 - 31.07.2019
Approved amount 537'854.00
Show all

Keywords (6)

quantum memory; macroscopicness; Spin Squeezing; quantum physics; entanglement; Resource Theory

Lay Summary (French)

Lead
Many-Atom Entanglement in Crystals
Lay summary

La vision de ce projet est d'explorer de vastes systèmes intriqués et de recueillir des preuves que l’intrication peut survivre à grande échelle. Cela se fera expérimentalement car nous proposons de démontrer l’intrication de nombreux atomes à l'aide de spins d'ions europium dopés dans un cristal. Nous visons à créer et caractériser des états intriqués de nombreux atomes dans un ensemble contenant des ions, et à développer des nouvelles techniques pour créer des états intriqués qui n'ont jamais été réalisés dans des états solides, appelés « des états comprimés de spin ». Les états comprimés de spin sont des états de grand d’intérêt pour les études fondamentales de l'intrication de nombreux atomes et pour des applications futures  basées sur des mesures quantiques de précision. De plus, nous allons d'explorer le stockage prolongé d'états intriqués de nombreux atomes, jusqu'à plusieurs minutes, en exploitant des techniques de contrôle cohérentes récemment démontrées.

Le côté théorique du projet vise à affiner les notions «des états quantiques macroscopiques». Pour approfondir notre compréhension de la nature, nous allons continuer à explorer des questions comme «Qu'est-ce que c’est un état intriqué grand?» Et «Qu'est-ce qui mérite d'être appelé l'intrication entre des systèmes macroscopiques?» Pour cela, nous allons développer des théories de type «ressource» plus intuitives, qui peuvent être appliquées sur de nombreux systèmes physiques. Nous allons également comparer des différents systèmes physiques macroscopiques, en utilisant des outils quantitatifs développés dans notre projet précédent. Enfin, nous chercherons à établir des liens entre les états quantiques macroscopiques et la thermodynamique quantique et de travailler à l'intersection de ces deux domaines nouveaux et actifs.

Direct link to Lay Summary Last update: 05.05.2017

Lay Summary (English)

Lead
Many-Atom Entanglement in Crystals
Lay summary

The vision of this project is to explore large entangled systems and to collect evidence that entanglement can survive at large scales. This will be done experimentally as we propose to demonstrate many-atom entanglement using spins of europium ions doped into a crystal. We aim at creating and characterizing many-atom entangled states in an ensemble containing billions of ions as well as developing techniques for creating many-atom entangled states that have never been achieved in a solid, so-called spin-squeezed states. These are states of high interest both for fundamental studies of many-atom entanglement and for future applications in quantum-enhanced precision measurements. Furthermore, we plan to explore long-duration storage of many-atom entangled states, up to several minutes, by exploiting recently demonstrated coherent quantum control techniques.

The theoretical activities will aim to sharpen the notions of “macroscopic quantum”. In order to deepen our understanding of Nature we shall continue to explore questions like “What is large entanglement?” and “What deserves to be called entanglement between macroscopic systems?”. For this, we will develop strong and intuitive resource theories and concepts that cover many physical systems. We shall also systematically compare very different kinds of large systems, using quantitative tools developed in our previous project, to compare different physical systems. Finally, we will look for connections between macroscopic quantum states and quantum thermodynamics and work on the intersection of these two young and active fields.

Direct link to Lay Summary Last update: 05.05.2017

Responsible applicant and co-applicants

Employees

Project partner

Publications

Collaboration

Group / person Country
Types of collaboration
Goldner Group at Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Joint Annual Meeting of SPS and ÖPG Talk given at a conference Towards spin-squeezing a solid 26.08.2019 Zurich, Switzerland Kaczmarek Krzysztof;
Joint Annual Meeting of SPS and ÖPG Talk given at a conference Sub-second storage in an atomic frequency comb memory using dynamical decoupling 26.08.2019 Zurich, Switzerland Holzaepfel Adrian;
BQIT:19 Talk given at a conference Optical spin-wave memory using electronic rare earth spins in crystals 03.04.2019 Bristol, Great Britain and Northern Ireland Afzelius Mikael;
EQTC 2019 Talk given at a conference Towards spin-squeezing a solid 18.02.2019 Grenoble, France Kaczmarek Krzysztof;
EQTC19 Poster Sub-second storage in an atomic frequency comb memory using dynamical decoupling 18.02.2019 Grenoble, France Holzaepfel Adrian;
AQIS 18 Talk given at a conference From Quantum foundations to applications and back 08.09.2018 Nagoya, Japan Gisin Nicolas;
LPHYS 2018 Talk given at a conference Simultaneous Coherence Enhancement of Optical and Microwave Transitions in Solid-State Electronic Spins 16.07.2018 Nottingham, Great Britain and Northern Ireland Tiranov Alexey;
Prospects of Plasmonics for Quantum Technologies Talk given at a conference Generating non-classical correlations between photons and spins in a crystal 25.06.2018 Gothenburg, Sweden Afzelius Mikael;
MCQS2018 Talk given at a conference Macroscopic Quantum Measurements 15.05.2018 Paris, France Renou Marc-Olivier;
Darmstadt colloquium Individual talk Collapse, what else ? 12.01.2018 Darmstadt, Germany Gisin Nicolas;


Self-organised

Title Date Place
XIII RARE EARTH IONS WORKSHOP 24.10.2018 Geneva, Switzerland

Associated projects

Number Title Start Funding scheme
149109 Large entanglement in crystals 01.06.2014 Project funding (Div. I-III)
125723 NCCR QSIT: Quantum Science and Technology (phase I) 01.01.2011 National Centres of Competence in Research (NCCRs)
149109 Large entanglement in crystals 01.06.2014 Project funding (Div. I-III)
127118 Bell experiments with human detectors 01.11.2009 Interdisciplinary projects

Abstract

Quantum theory is often presented as the theory of the microscopic world. However, things have changed dramatically over the last decade. Today one can envision manipulating large quantum systems, while mastering individual degrees of freedom. This opens up the possibility to access quantum effects in unexplored domains and provides motivations to entirely revisit a great number of questions on the quantum/classical transition.The vision of this project is to explore large entangled systems and to collect evidence that entanglement can survive at large scales. This will be done experimentally as we propose to demonstrate many-atom entanglement using spins of europium ions doped into a crystal. By manipulating the spins both with optical and radio-frequency pulses we aim at creating and characterising many-atom entangled states in an ensemble containing billions of ions. In addition we also propose to develop techniques for creating a class of many-atom entangled states which have never been achieved in a solid, so-called spin-squeezed states. These are states of high interest both for fundamental studies of many-atom entanglement and for future applications in quantum-enhanced precision measurements. Furthermore, we plan to explore long-duration storage of many-atom entangled states, up to several minutes. To keep an entangled state for such a long time would be fascinating in itself, and we believe it would also shed new light on the connections between decoherence, size of the quantum system and the quantum-to-classical transition. To achieve these goals we will build on our recent demonstrations of quantum memories for light using Europium-doped crystals. The coherent quantum control we recently have demonstrated in this system, both in the optical and spin domain, now makes this proposal experimentally feasible and very timely.Experiments will advance hand-in-hand with theory. The theoretical activities will aim to sharpen the notions of “macroscopic quantum”. In order to deepen our understanding of Nature we shall continue to explore questions like “What is large entanglement?” and “What deserves to be called entanglement between macroscopic systems?”. Recently, many theoretical ideas on the characterisation of so-called “macroscopic quantum states” have been put forward. Now, it seems to be the proper time to distill the most important features from these contributions and to work towards a more accepted theory of macroscopic quantum states. For this, we will develop strong and intuitive resource theories and concepts that cover many physical systems. This will reinforce the scientific dialogue. We shall also systematically compare very different kinds of large systems, using quantitative tools developed in our previous project, to compare SQUIDs, nanomechanical oscillators, large molecules, diamonds, our rare-earth-ion-doped crystals and more. Finally, we will look for connections between macroscopic quantum states and quantum thermodynamics and work on the intersection of these two young and active fields.Although this project focuses on fundamental questions, it will also contribute to improving the quantum memories required for continental scale ultra-secure quantum communications. We expect other surprising applications, in particular the high sensitivity of large entanglement to various decoherence mechanisms can be turned positively into quantum sensors.
-