Project

Back to overview

CO2 to Value: Electroconversion of CO2 on Electrodeposited Metal Foam Catalysts

Applicant Broekmann Peter
Number 172507
Funding scheme Project funding (Div. I-III)
Research institution Departement für Chemie, Biochemie und Pharmazie Universität Bern
Institution of higher education University of Berne - BE
Main discipline Physical Chemistry
Start/End 01.04.2017 - 31.03.2021
Approved amount 721'364.00
Show all

All Disciplines (2)

Discipline
Physical Chemistry
Material Sciences

Keywords (4)

Metal plating; Carbon dioxide; Electrochemistry; Electrocatalysis

Lay Summary (German)

Lead
Kohlendioxid (CO2) ist eines der anthropogenen Treibhausgase, die massgeblich für die globale Klimaerwärmung verantwortlich sind und vor allem durch die Verbrennung fossiler Brennstoffe wie Kohle, Öl und Erdgas in die Erdatmosphäre unvermindert emittiert werden. Dringend gefragt sind nicht nur Strategien zur Vermeidung von CO2-Emissionen durch alternative, klimafreundlichere Energiequellen, sondern auch Konzepte zur Umwandlung des bereits in der Atmosphäre vorhandenen, schädlichen Kohlendioxids in wertvollere Stoffe (z.B. in Brennstoffe für Brennstoffzellentechnologie oder in Ausgangsstoffe für die industrielle Synthese von Stoffen/Polymere). Die physikochemischen Grundlagen dieses sogenannten CO2 to value-Konzepts sind Thema dieses Projektes.
Lay summary

Inhalt und Ziel des Forschungsprojekts

CO2 soll mit Hilfe von überschüssigem, elektrischem Strom in nutzbare Stoffe (z.B. Alkohole, Ameisensäure, Ethylen etc.) umgewandelt werden. Für diese elektrochemische Konversion benötigt man spezielle Katalysatoren, um die Reduktion des sehr stabilen Kohlendioxids signifikant zu beschleunigen. Im Fokus dieses Projektes stehen neuartige Metallschaumkatalysatoren auf Kupferbasis, die sich neben ihrer hohen katalytischen Aktivität durch eine extrem grosse innere Oberfläche auszeichnen. Diese hochporösen Metallschaumkatalysatoren sollen durch eine Additiv-gesteuerte Metallabscheidung auf geeigneten technischen Substraten hergestellt werden. Ziel des Projektes ist die Entwicklung dieser Kupferkatalysatoren für grosstechnische CO2-Elektrolyseure.       

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Erklärtes dieses Projektes ist es, einen wissenschaftlichen und technischen Beitrag zur Lösung des globalen CO2-Problems zu leisten idurch die Entwicklung eines energieeffizienten Prozesses zur elektrochemischen CO2-Konversion.

1. Mai 2017

Direct link to Lay Summary Last update: 01.05.2017

Responsible applicant and co-applicants

Employees

Publications

Publication
Toward CO 2 Electroreduction under Controlled Mass Flow Conditions: A Combined Inverted RDE and Gas Chromatography Approach
Moreno-García Pavel, Kovács Noémi, Grozovski Vitali, Gálvez-Vázquez María de Jesús, Vesztergom Soma, Broekmann Peter (2020), Toward CO 2 Electroreduction under Controlled Mass Flow Conditions: A Combined Inverted RDE and Gas Chromatography Approach, in Analytical Chemistry, 92(6), 4301-4308.
Activation of bimetallic AgCu foam electrocatalysts for ethanol formation from CO2 by selective Cu oxidation/reduction
Dutta Abhijit, Montiel Iván Zelocualtecatl, Erni Rolf, Kiran Kiran, Rahaman Motiar, Drnec Jakub, Broekmann Peter (2020), Activation of bimetallic AgCu foam electrocatalysts for ethanol formation from CO2 by selective Cu oxidation/reduction, in Nano Energy, 68, 104331-104331.
Full Model for the Two-Step Polarization Curves of Hydrogen Evolution, Measured on RDEs in Dilute Acid Solutions
Gálvez-Vázquez María de Jesús, Grozovski Vitali, Kovács Noémi, Broekmann Peter, Vesztergom Soma (2020), Full Model for the Two-Step Polarization Curves of Hydrogen Evolution, Measured on RDEs in Dilute Acid Solutions, in The Journal of Physical Chemistry C, 124(7), 3988-4000.
Inverted RDE (iRDE) as Novel Test Bed for Studies on Additive-Assisted Metal Deposition under Gas-Evolution Conditions
Moreno-García Pavel, Grozovski Vitali, Vázquez María de Jesús Gálve, Mysuru Nisarga, Kiran Kiran, Kovács Noémi, Hou Yuhui, Vesztergom Soma, Broekmann Peter (2020), Inverted RDE (iRDE) as Novel Test Bed for Studies on Additive-Assisted Metal Deposition under Gas-Evolution Conditions, in Journal of The Electrochemical Society, 167(4), 042503-042503.
Testing a Silver Nanowire Catalyst for the Selective CO 2 Reduction in a Gas Diffusion Electrode Half-cell Setup Enabling High Mass Transport Conditions
Gálvez-Vázquez María de Jesús, Alinejad Shima, Hu Huifang, Hou Yuhui, Moreno-García Pavel, Zana Alessandro, Wiberg Gustav K. H., Broekmann Peter, Arenz Matthias (2019), Testing a Silver Nanowire Catalyst for the Selective CO 2 Reduction in a Gas Diffusion Electrode Half-cell Setup Enabling High Mass Transport Conditions, in CHIMIA International Journal for Chemistry, 73(11), 922-927.
Photonic Curing: Activation and Stabilization of Metal Membrane Catalysts (MMCs) for the Electrochemical Reduction of CO 2
Hou Yuhui, Bolat Sami, Bornet Aline, Romanyuk Yaroslav E., Guo Huizhang, Moreno-García Pavel, Zelocualtecatl Montiel Ivan, Lai Zhiqiang, Müller Ulrich, Grozovski Vitali, Broekmann Peter (2019), Photonic Curing: Activation and Stabilization of Metal Membrane Catalysts (MMCs) for the Electrochemical Reduction of CO 2, in ACS Catalysis, 9(10), 9518-9529.
Catalyst Development for Water/CO 2 Co-electrolysis
Dutta Abhijit, Bizzotto Francesco, Quinson Jonathan, Zana Alessandro, Morstein Carina Elisabeth, Rahaman Motiar A, López Alena Cedeño, Arenz Matthias, Broekmann Peter (2019), Catalyst Development for Water/CO 2 Co-electrolysis, in CHIMIA International Journal for Chemistry, 73(9), 707-713.
Synthesis and Characterization of Degradation‐Resistant Cu@CuPd Nanowire Catalysts for the Efficient Production of Formate and CO from CO 2
Hou Yuhui, Erni Rolf, Widmer Roland, Rahaman Motiar, Guo Huizhang, Fasel Roman, Moreno‐García Pavel, Zhang Yucheng, Broekmann Peter (2019), Synthesis and Characterization of Degradation‐Resistant Cu@CuPd Nanowire Catalysts for the Efficient Production of Formate and CO from CO 2, in ChemElectroChem, 6(12), 3189-3198.
Enhanced electrocatalytic CO formation from CO2 on nanostructured silver foam electrodes in ionic liquid/water mixtures
Rudnev Alexander V., Kiran Kiran, Cedeño López Alena, Dutta Abhijit, Gjuroski Ilche, Furrer Julien, Broekmann Peter (2019), Enhanced electrocatalytic CO formation from CO2 on nanostructured silver foam electrodes in ionic liquid/water mixtures, in Electrochimica Acta, 306, 245-253.
Leaded Bronze Alloy as a Catalyst for the Electroreduction of CO 2
Gálvez‐Vázquez María de Jesús, Moreno‐García Pavel, Guo Huizhang, Hou Yuhui, Dutta Abhijit, Waldvogel Siegfried R., Broekmann Peter (2019), Leaded Bronze Alloy as a Catalyst for the Electroreduction of CO 2, in ChemElectroChem, 6(8), 2324-2330.
A General and Facile Approach for the Electrochemical Reduction of Carbon Dioxide Inspired by Deep Eutectic Solvents
Vasilyev Dmitry V., Rudnev Alexander V., Broekmann Peter, Dyson Paul J. (2019), A General and Facile Approach for the Electrochemical Reduction of Carbon Dioxide Inspired by Deep Eutectic Solvents, in ChemSusChem, 12(8), 1635-1639.
Probing the chemical state of tin oxide NP catalysts during CO2 electroreduction: A complementary operando approach
Dutta Abhijit, Kuzume Akiyoshi, Kaliginedi Veerabhadrarao, Rahaman Motiar, Sinev Ilya, Ahmadi Mahdi, Roldán Cuenya Beatriz, Vesztergom Soma, Broekmann Peter (2018), Probing the chemical state of tin oxide NP catalysts during CO2 electroreduction: A complementary operando approach, in Nano Energy, 53, 828-840.
Selective Electrochemical Reduction of CO 2 to CO on Zn-Based Foams Produced by Cu 2+ and Template-Assisted Electrodeposition
Moreno-García Pavel, Schlegel Nicolas, Zanetti Alberto, Cedeño López Alena, Gálvez-Vázquez María de Jesús, Dutta Abhijit, Rahaman Motiar, Broekmann Peter (2018), Selective Electrochemical Reduction of CO 2 to CO on Zn-Based Foams Produced by Cu 2+ and Template-Assisted Electrodeposition, in ACS Applied Materials & Interfaces, 10(37), 31355-31365.
Beyond Copper in CO 2 Electrolysis: Effective Hydrocarbon Production on Silver-Nanofoam Catalysts
Dutta Abhijit, Morstein Carina Elisabeth, Rahaman Motiar, Cedeño López Alena, Broekmann Peter (2018), Beyond Copper in CO 2 Electrolysis: Effective Hydrocarbon Production on Silver-Nanofoam Catalysts, in ACS Catalysis, 8(9), 8357-8368.
Surface Structure Sensitivity of CO 2 Electroreduction on Low-Index Gold Single Crystal Electrodes in Ionic Liquids
Fu Yongchun, Ehrenburg Maria R., Broekmann Peter, Rudnev Alexander V. (2018), Surface Structure Sensitivity of CO 2 Electroreduction on Low-Index Gold Single Crystal Electrodes in Ionic Liquids, in ChemElectroChem, 5(5), 748-752.
Transport Matters: Boosting CO 2 Electroreduction in Mixtures of [BMIm][BF 4 ]/Water by Enhanced Diffusion
Rudnev Alexander V., Fu Yong-Chun, Gjuroski Ilche, Stricker Florian, Furrer Julien, Kovács Noémi, Vesztergom Soma, Broekmann Peter (2017), Transport Matters: Boosting CO 2 Electroreduction in Mixtures of [BMIm][BF 4 ]/Water by Enhanced Diffusion, in ChemPhysChem, 18(22), 3153-3162.
Electrochemical Reduction of CO 2 into Multicarbon Alcohols on Activated Cu Mesh Catalysts: An Identical Location (IL) Study
Rahaman Motiar, Dutta Abhijit, Zanetti Alberto, Broekmann Peter (2017), Electrochemical Reduction of CO 2 into Multicarbon Alcohols on Activated Cu Mesh Catalysts: An Identical Location (IL) Study, in ACS Catalysis, 7(11), 7946-7956.
Electrochemical CO 2 Conversion Using Skeleton (Sponge) Type of Cu Catalysts
Dutta Abhijit, Rahaman Motiar, Mohos Miklos, Zanetti Alberto, Broekmann Peter (2017), Electrochemical CO 2 Conversion Using Skeleton (Sponge) Type of Cu Catalysts, in ACS Catalysis, 7(8), 5431-5437.

Collaboration

Group / person Country
Types of collaboration
ERSF France (Europe)
- Publication
- Research Infrastructure

Scientific events



Self-organised

Title Date Place

Knowledge transfer events



Self-organised

Title Date Place
Nano-(electro)chemistry day 28.06.2019 Köniz, Switzerland
CO2 day at the DCB 06.06.2019 Bern, Switzerland

Awards

Title Year
Faculty Prize 2018 awarded to Carina Morstein for her master thesis entitled "Porous Silver Foams and Silver Microparticles: Applications in the Electrochemical Conversion of Carbon Dioxide" 2019

Associated projects

Number Title Start Funding scheme
149224 Copper/Electrolyte Interfaces under Reactive Conditions II 01.01.2014 Project funding (Div. I-III)
157656 Diffusion NMR probehead for detailed investigations of the diffusion and transport properties of polymers, ionic liquids and protein aggregates 01.12.2014 R'EQUIP
170727 A Flow Chemistry Instrumentation 01.12.2016 R'EQUIP

Abstract

The proposed project entitled "CO2 to value: Electroconversion of CO2 on Electrodeposited Metal Foam Catalysts" aims to develop new catalysts concepts for the electrochemical conversion of CO2 into products of higher value (C-C coupled C2-4 products and formate) which have a high potential to be implemented into future industrial CO2 technology applications. New concepts of catalyst design will make use of an additive-assisted electroplating process which is highly versatile in terms of controlling the catalyst morphology on various length scales that are relevant for the creation of catalytically active sites (nm-scale) and the reactant/intermediate/product mass transport (µm-scale). The resulting product distribution of the electrochemical CO2 conversion is believed to be a result of the concerted effects taking place on these nm- and µm-length scales. The Cu- and Sn-based catalysts to be designed are highly porous metal foams whose composition and porosity can carefully be controlled by the experimental parameters. A key point in the catalyst design is the formation of well-defined oxide-phases on these metal foams during or after their electrodeposition. The most active catalysts are believed to be composites of these metal foam materials and their corresponding (surface) oxide-phases. The latter are typically consumed/degraded under conditions of the CO2 conversion. In this respect these materials are not catalysts in the classical sense which leave the catalytic cycle unchanged. Therefore we intend to develop so-called operando spectroscopies which are particularly sensitive to the presence of oxidic species (operando Raman approach). Their presence will be studied under reactive conditions as a function of the applied potential and the electrolyte composition. The key scientific working hypothesis to be proven is that the oxide phases are still present (and active for the CO2 conversion) even at electrode potentials where these are thermodynamically instable (kinetic stabilization). Such operando spectroscopies should further be used to develop strategies how these catalytically active oxide phases are either recovered (e.g. by anodization) or conserved under operando conditions (e.g. by diffusion-limited metal deposition superimposed on the CO2 conversion). These experimental approaches are meant to deepen our mechanistic understanding of the CO2 conversion process here particularly focusing on the potential-dependent chemical state of the highly porous catalyst. A further important goal of this project is to translate the functional metal foams that are selective towards certain CO2 reduction products onto 2D Cu mesh and/or 3D skeleton supports (excluded are any carbon supports). They allow for a more detailed study of the reactant/intermediate/product transport through the catalyst material. An important factor determining both the catalyst activity and the selectivity towards certain products is the mean residence time of the reactants/intermediates/products inside the catalyst. Kinetic data of the electrochemical CO2 conversion should therefore be collected under controlled mass transfer conditions (convection/diffusion) through the catalyst.
-