Project

Back to overview

Porous materials with patterned wettability for advanced fuel cell water management strategies: improvement of durability and in situ performance

Applicant Boillat Pierre
Number 172474
Funding scheme Project funding (Div. I-III)
Research institution Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Material Sciences
Start/End 01.04.2017 - 31.03.2019
Approved amount 168'649.00
Show all

All Disciplines (4)

Discipline
Material Sciences
Organic Chemistry
Fluid Dynamics
Chemical Engineering

Keywords (7)

two phase flow; durability; surface functionalization; graft copolymerization; patterned wettability; gas diffusion layer; polymer electrolyte fuel cell

Lay Summary (German)

Lead
Die Lebensdauer und Leistung von neuen Materialien, die für Brennstoffzellen entwickelt wurden, um die Transportpfade der Reaktionsgase und des flüssigen Wassers zu kontrollieren, werden analysiert und verbessert. Diese Materialen werden eingesetzt, um die Problematik des Wasserhaushaltes in den Brennstoffzellen zu vereinfachen und damit deren Kosten zu senken.
Lay summary

Inhalt und Ziel des Forschungsprojekts

Polymerelektrolyt Brennstoffzellen bieten eine attraktive Alternative zu Benzin- und Dieselfahrzeugen, da sie sich mit einer Schadstoff- und CO2-freien Betriebsweise auszeichnen. Jedoch ist der Umgang mit Produktwasser sehr komplex, da das flüssige Wasser die Transportpfade mit den Reaktionsgasen teilen muss. Unter anderen sammelt sich das Wasser in der sogenannten Gasdiffusionsschicht, einem wasserabstossenden porösen Material, das für die feine Verteilung der Gase zuständig ist. Diese Ansammlung führt zu Leistungsverlust.

In Rahmen einen früheren SNF finanzierten Projektes (No. 143432) wurde eine neue Technologie entwickelt, wo gewisse Bereiche der Gasdiffusionsschicht wasseranziehend gemacht wurden, um spezifische Pfade für den Wasserabtransport zu schaffen. Die neuen Materialien wurden in Laborzellen eingesetzt, wo eine Verbesserung der Leistung erzielt wurde. Im jetzigen Projekt wird einerseits die Lebensdauer dieser Materialien analysiert und bei Bedarf verbessert. Anderseits wird versucht die Leistung des Materials mittels der Kombination unseres Prozesses mit zweischichtigen Gasdiffusionschichten zu verbessern.

Wissenschaftlicher und Gesellschaftlicher Kontext

Brennstoffzellenfahrzeuge haben das Potential, die emissionsfreie Betriebsweise von Batteriefahrzeugen mit den praktischen Aspekten der herkömmliche Benzin- und Dieselfahrzeugen (hohe Reichweite, schnelles Tanken) zu kombinieren. Erste kommerzielle Modelle wurden in den letzten Jahren von verschiedenen Herstellern eingeführt. Die Verbreitung hängt jedoch stark von deren Kosten ab. Die entwickelten Materialien werden durch eine Vereinfachung der Wasserhaushaltes helfen, diese Kosten zu senken und die weitere Verbreitung dieser umweltschonenden Technologie zu fördern.

Direct link to Lay Summary Last update: 10.04.2017

Lay Summary (French)

Lead
La durabilité et la performance de nouveaux matériaux développés pour un meilleur contrôle des chemins de transport de l’eau et des gaz réactifs dans les piles à combustibles sera analysée et améliorée. Ces nouveaux matériaux sont utilisés pour résoudre la problématique de la gestion de l’eau dans les piles à combustible, et ainsi à réduire leur coût.
Lay summary

Contenu et buts du projet de recherche

Les piles à combustible offrent une alternative attractive aux véhicules à essence et au diesel, grâce à leur absence d’émissions de polluants et de gaz à effet de serre. Cependant, la gestion de l’eau produite à l’intérieur de la pile est très complexe, car l’eau sous forme liquide doit partager l’espace à disposition avec les gaz utilisé pour la réaction. En particulier, l’eau s’accumule dans la couche de diffusion, un matériau poreux et hydrophobe destiné à la répartition fine des gaz. Cette accumulation provoque des pertes de performance.

Dans le cadre d’un précédent projet financé par le FNS (no. 143432), une nouvelle technologie a été développée dans laquelle une partie de la couche de diffusion a été rendue hydrophile afin de créer un chemin pour l’évacuation de l’eau. Ces nouveaux matériaux ont été testés dans des piles à combustibles de laboratoire, et une amélioration de leur performance a été observée. Dans ce nouveau projet, la durabilité des matériaux sera analysée et si nécessaire améliorée. De plus, une amélioration de la performance sera réalisée par la combinaison de notre procédé avec des matériaux modernes constitués de deux couches de diffusion.

Contexte scientifique et sociétal

Les véhicules à pile à combustible ont le potentiel de combiner l’absence d’émissions offerte actuellement par les véhicules électriques à batterie avec la facilité d’usage offerte par les véhicules à essence ou au diesel (grande autonomie, plein rapide). Les premiers modèles commerciaux ont été mis sur le marché par différent constructeurs dans les années précédentes, mais leur généralisation dépendra fortement de la réduction de leur coût. Les matériaux développés dans le cadre de ce projet aideront à réduire ces coûts grâce à la simplification de la gestion de l’eau, et permettront une plus large diffusion de cette technologie non polluante.

Direct link to Lay Summary Last update: 10.04.2017

Lay Summary (English)

Lead
The durability and performance of new materials, which were developed for a better control of the transport pathways of water and reaction gases in fuel cells, will be analyzed and improved. This new materials are used to improve the known issue of water management in fuel cells and thus to help reducing their cost.
Lay summary

Content and goals of the research project

Polymer electrolyte fuel cells offer an attractive alternative to gasoline and diesel vehicles, due to their absence of pollutant and greenhouse gases emissions. However, the management of the product water is very complex, as liquid water must share the pathways with the reaction gases. In particular, water accumulates in the so called gas diffusion layer, a water repellent porous material which is used for the fine distribution of gases. This accumulation leads to performance losses.

In the frame of a previous SNSF funded project (no. 143432), a new technology was developed, in which special regions of the gas diffusion layer were made hydrophilic (= water attracting), to create pathways for the removal of water. The new materials were tested in small laboratory cells and an improvement of performance was obtained. In the current follow-up project, the durability of these materials will be analyzed and improved if necessary. Moreover, the performance will be further improved by the combination of our process with state-of-the-art bilayer materials.

Scientific and societal context

Fuel cell vehicles have the potential to combine the emission free aspects of the well-known battery electric vehicles and the ease-of-use aspects of the usual gasoline and diesel vehicles (long driving range, fast refill). First commercial models were put on the market by different automotive companies in the previous years, but their wide acceptance is strongly dependent on a reduction of the costs. The materials developed in the frame of this project will help to reduce the costs through a simplification of the water management, and to increase the prevalence of this environmentally friendly technology.

Direct link to Lay Summary Last update: 10.04.2017

Responsible applicant and co-applicants

Employees

Publications

Publication
Improved Water Management for PEFC with Interdigitated Flow Fields using Modified Gas Diffusion Layers
Manzi-Orezzoli Victoria, Siegwart Muriel, Cochet Magali, Schmidt Thomas J., Boillat Pierre (2019), Improved Water Management for PEFC with Interdigitated Flow Fields using Modified Gas Diffusion Layers, in Journal of The Electrochemical Society, 167(5), 054503-054503.
Coating Distribution Analysis on Gas Diffusion Layers for Polymer Electrolyte Fuel Cells by Neutron and X-ray High-Resolution Tomography
Manzi-Orezzoli Victoria, Mularczyk Adrian, Trtik Pavel, Halter Jonathan, Eller Jens, Schmidt Thomas J., Boillat Pierre (2019), Coating Distribution Analysis on Gas Diffusion Layers for Polymer Electrolyte Fuel Cells by Neutron and X-ray High-Resolution Tomography, in ACS Omega, 4(17), 17236-17243.

Collaboration

Group / person Country
Types of collaboration
Zürcher Hochschule für Angewandte Wissenschaften (ZHAW) Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
University of Waterloo Canada (North America)
- in-depth/constructive exchanges on approaches, methods or results
Fachhochschule Nordwest Schweiz (FHNW) Switzerland (Europe)
- Research Infrastructure

Awards

Title Year
Best poster award at the 15th Symposium on Modeling and Validation of Electrochemical Energy Devices, Aarau, Switzerland, 12-13 April 2018 2018

Associated projects

Number Title Start Funding scheme
143432 Synthesis and characterization of porous materials with patterned wettabillity for advanced fuel cell water management strategies 01.04.2013 Project funding (Div. I-III)
169913 Coupled multi-phase transport in porous layers for fuel cells utilizing evaporative cooling 01.02.2017 Project funding (Div. I-III)
185085 Materials and designs for improved freeze-start capability and prevention of freezing damage in fuel cells 01.07.2019 Project funding (Div. I-III)

Abstract

In the frame of a recent SNSF funded project, we successfully tested a new approach for the synthesis of porous materials with a defined spatial pattern of hydrophilic and hydrophobic regions. These materials are intended for use in polymer electrolyte fuel cells in order to better control the interplay between the supply of gaseous reactants and the evacuation of liquid water, and thus to minimize the losses related to mass transport. Furthermore, such materials can be used for performing in situ humidification and cooling by evaporation.Following the successful steps of material synthesis, ex situ characterisation and initial in situ testing, we propose a follow-up project to deal specifically with the aspects of durability and of improved in situ performance. The first aspect will be addressed not only in terms of the durability of our new materials subjected to the typical solicitations of a fuel cell environment, but also in terms of the impact our material can have on the durability of other fuel cell components. The proposed studies will deal with the durability aspects of the materials developed in the frame of the previous project, as well as with the further development of these materials with the target to improve durability. Concerning the in situ performance, an important focus will be placed on the strategy to synthesize bi-layer diffusion media including a micro porous layer (MPL), as usual in fuel cells. On this topic, different approaches will be tested including the application of the MPL before or after the creation of the wettability pattern. The characteristics of the bi-layer materials will be tested in both ex situ and in situ experiments. The improvement of in situ performance will also include the design of flow field patterns specifically adapted to the combination with our novel diffusion media.The project will be sustained by a large set of characterization methods available at the PSI Electro-chemistry Laboratory including classical laboratory methods (SEM-EDX, FTIR, XPS), a specific apparatus for the recording of capillary pressure curves for multiple samples, a multi-cell test rig for simultaneous operation of up to 6 small cells, and a larger fuel cell test rig with advanced instrumentation. The analysis of in situ performance losses terms will also be sustained by our recently published method called pulsed gas analysis (PGA).
-