Projekt

Zurück zur Übersicht

Designing novel electrocatalysts for fuel cells and electrolyzers by tailoring perovskite surface properties

Gesuchsteller/in Fabbri Emiliana
Nummer 171426
Förderungsinstrument Ambizione
Forschungseinrichtung Labor für Elektrochemie Paul Scherrer Institut
Hochschule Paul Scherrer Institut - PSI
Hauptdisziplin Physikalische Chemie
Beginn/Ende 01.01.2017 - 31.08.2017
Bewilligter Betrag 95'399.00
Alle Daten anzeigen

Alle Disziplinen (2)

Disziplin
Physikalische Chemie
Materialwissenschaften

Keywords (3)

electrocatalysis; perovskites; electrolyzer

Lay Summary (Italienisch)

Lead
Emiliana Fabbri
Lay summary

In sintesi

L’elettrolisi dell’acqua è un processo elettrochimico dove l’utilizzo di corrente elettrica causa la scomposizione dell'acqua in ossigeno ed idrogeno gassosi. Idealmente, la corrente elettrica utilizzata nel processo di elettrolisi dell’acqua viene prodotta da fonti di energia rinnovabili, le quali sono di natura intermittente e quindi hanno bisogno di un sistema per immagazzinare l’energia prodotta in eccesso. In tal modo, la corrente in eccesso è immagazzinata sotto forma di gas (idrogeno ed ossigeno) che possono essere riconvertiti quando e dove si necessita di energia elettrica attraverso una cella a combustibile (dispositivo elettrochimico che converte idrogeno e ossigeno in energia elettrica).

Soggetto e obiettivo

Il componente che piu’ limita le prestazioni dell’elettrolisi dell’acqua è l’elettrodo nel quale avvengono le reazioni di elettrocatalisi dell’ossigeno. Lo sviluppo di un elettrodo di materiale economico, stabilie nel tempo, e con buone prestazioni potrebbe dunque promuovere una rapida commercializzazione di dispositivi per l’eletrolisi dell’acqua. Per questa ragione il presente progetto ha lo scopo di investigare vari materiali, sviluppando una conoscenza comprensiva delle loro proprietà catalitiche.

 

Contesto socio-scientifico

Dopo la decisione di terminare l’uso delle centrali nucleari in Svizzera, grande attenzione è stata rivolta verso l’uso di fonti rinnovabili. L’energia da fonti rinnovabili è pero’ prodotta in maniera discontinua e necessita di sistemi di stoccaggio. Utilizzando una cella elettrolitica l’energia elettrica prodotta da fonti rinnovabili puo’ essere immagazzinata tramite idrogeno ed ossigeno, i quali posso poi essere riutilizzati per produrre energia dove e quando è necessaria tramite una cella a combustibile.

Direktlink auf Lay Summary Letzte Aktualisierung: 06.12.2016

Verantw. Gesuchsteller/in und weitere Gesuchstellende

Mitarbeitende

Publikationen

Publikation
Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting
emiliana fabbri et al. (2017), Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting, in Nature Materials, 16, 925-931.
Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting
Fabbri Emiliana, Nachtegaal Maarten, Binninger Tobias, Cheng Xi, Kim Bae-Jung, Durst Julien, Bozza Francesco, Graule Thomas, Schäublin Robin, Wiles Luke, Pertoso Morgan, Danilovic Nemanja, Ayers Katherine E., Schmidt Thomas J. (2017), Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting, in Nature Materials, 385.
Effect of Ball Milling on the Electrocatalytic Activity of Ba0.5Sr0.5Co0.8Fe0.2O3 towards the Oxygen Evolution Reaction
Cheng Xi., Fabbri Emiliana et al. (2017), Effect of Ball Milling on the Electrocatalytic Activity of Ba0.5Sr0.5Co0.8Fe0.2O3 towards the Oxygen Evolution Reaction, in Journal of Materials Chemistry A, 5, 13130.
Operando X-ray absorption spectroscopy: A powerful tool toward water splitting catalyst development,
Fabbri Emiliana (2017), Operando X-ray absorption spectroscopy: A powerful tool toward water splitting catalyst development,, in Current Opinion in Electrochemistry, XXXX.
Unravelling Thermodynamics, Stability, and Oxygen Evolution Activity of Strontium Ruthenium Perovskite Oxide,
Kim B. Fabbri E. et al. (2017), Unravelling Thermodynamics, Stability, and Oxygen Evolution Activity of Strontium Ruthenium Perovskite Oxide,, in ACS Catalysis, 3245.

Zusammenarbeit

Gruppe / Person Land
Formen der Zusammenarbeit
Laboratory for High Performance Ceramics Empa Dübendorf Schweiz (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
- Forschungsinfrastrukturen
École polytechnique fédérale de Lausanne (EPFL), Laboratory of theory and simulation of materials Schweiz (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation

Verbundene Projekte

Nummer Titel Start Förderungsinstrument
148041 Designing novel electrocatalysts for fuel cells and electrolyzers by tailoring perovskite surface properties 01.01.2014 Ambizione

Abstract

The growing needs to store large amounts of energy produced from renewable sources have recently targeted substantial R&D efforts towards water electrolysis technologies. The oxygen evolution reaction (OER) occurring at the electrolyzer anode is central to the development of a clean, reliable and emissions-free hydrogen economy since this reaction is hampered by slow kinetics and significant overpotential losses. The development of robust and highly active anode materials for the OER is therefore a great challenge and it has been the focus of much research attention. Towards this end, significant efforts have been directed to the study of the OER activity and stability of several candidate materials. Among these, perovskites have finally emerged as a promising electrocatalysts for the OER. In addition, perovskites show a very desirable design feature in that their electronic properties can be varied in a controlled fashion by substituting in the ABO3 structure the A and B cations, allowing a wide range of compositions to be explored. Such substitutions lead to modifications of the perovskite band structure which in turn might directly affect their catalytic properties. Perovskites’ energy bands are very distinctive and they can be regarded as arising solely from the B site cations. The B cation is most commonly a transition metal, providing the key d-band electrons, and recent works have proposed that perovskite OER electrocatalytic activity depends on the B site electronic configuration. However, no investigations have so far reported on how the perovskite electronic and geometric structure changes during the OER (notably, as a function of electrochemical potentials) or on how it can correlate with the reaction barriers, kinetics, and overpotential. Furthermore, it has recently emerged that the surface compositions of perovskite catalysts can significantly differ from the bulk composition due to surface segregation of various elements. These findings point towards the paramount necessity to deeply study the surface properties of the perovskite catalysts before and after the oxygen evolution reaction, which might cause a further change in the surface composition.The main goal of the present project is to provide a fundamental understanding of OER mechanism and of the design principles governing the OER of highly active perovskite catalysts. This could represent an important breakthrough in the development of efficient energy storage devices. Compared to the state-of-the-art, the novelty of the present study lies in the emphasis pointed towards the fundamental importance of understanding the material electronic structure in operando conditions. This can be achieved through times resolved X-ray absorption spectroscopy (TR-XAS) measurements, which will provide snapshots of the electronic states under operational conditions. Furthermore, we want to investigate how the surface properties of the most promising perovskites catalysts differ from the bulk ones and how they are modified after operative conditions in the OER regime by X-ray photoelectron spectroscopy (XPS).Finally this research project wants to explore the OER catalytic activity of perovskite catalysts beyond the standard alkaline electrolyzer applications (i.e., in neutral electrolyte solution). Indeed, we want to explore the potential applicability of perovskite catalyst for water-oxidation at the anode side coupled with CO2 reduction at the cathode side in CO2-electrolyzers or (or also known as co-electrolyzers). This work will be performed establishing a strong collaboration with Swiss Competence Center for Energy Research (SCCER) directed by Prof Thomas Schmidt at Paul Scherrer Institut, which is currently financing a research project aiming to the development of cathode materials for co-electrolyzers. The preliminary data acquired during the present project might open new prospective for additional funding for a future project based on co-electrolyzer development.
-