Project

Back to overview

Physical constraints on natural and induced earthquakes using innovative lab-scale experiments: The LabQuake Machine

English title Physical constraints on natural and induced earthquakes using innovative lab-scale experiments: The LabQuake Machine
Applicant Wiemer Stefan
Number 170766
Funding scheme R'EQUIP
Research institution Schweizerischer Erdbebendienst ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Geophysics
Start/End 01.06.2017 - 31.05.2020
Approved amount 450'000.00
Show all

Keywords (4)

Earthquake physics; GeoEnergy ; Statistical seismology; Anthropogenic earthquakes

Lay Summary (German)

Lead
Erdbeben sind in erster Ordnung ein skaleninvarianter Prozess, der über mindestens 18 Größenordnungen studiert werden kann. Laborstudien können somitwichtige Rückschlüsse zu Erdbebenprozesse geben. LabQuake verbessert in vielen Aspekten die experimentellen Möglichkeiten zum Studium von Mikrobeben unter Laborbedingungen. Ziel unserer Forschung ist es einerseits, natürliche Erdbeben besser zu verstehen, andererseits aber auch das Phänomen von menschengemachten Erdbeben und deren Nutzen in den GeoEnergien zu studieren.
Lay summary

LabQuake ist teilweise motiviert durch die neue und dringende Notwendigkeit induzierte beziehungsweise antropogene Erdbeben besser zu verstehen und, soweit möglich, zu kontrollieren.  LabQuake, ein neuartiges und hochflexibles Triaxialgerät mit einem einzigartigen seismischen Monitoring-System, ermöglicht eine breite Palette von Studien, die darauf abzielen, die durch die Fluiddruckausbreitung ausgelöste  Mikroseismizität zu analysieren. LabQuake ermöglicht systematische experimentelle Untersuchungen über die Auswirkungen der Porenflüssigkeitsvariation in verschiedensten Materialien, durch gleichzeitige und hochauflösende Messung von poroelastischen, mechanischen, hydraulischen und thermischen Eigenschaften. Das System, das wir entworfen haben, ermöglicht  bahnbrechende Forschung durch eine Reihe von einzigartigen Eigenschaften:

• LabQuake wird mit einer neuen Generation von akustischen Emissionssensoren ausgestattet, die kleiner, besser kalibriert, hochtemperaturbeständig sind und eine kontinuierliche Datenerfassung ermöglichen. 

• LabQuake verfügt über ein flexibles und modulares Design. Es wird über ein breites Spektrum von Umgebungsparametern arbeiten: Von - 20 ° C - 300 ° C und bis zu 300 MPa Begrenzungsdruck. Diese Parameter erlauben das Experimentieren auf einer breiten Palette von Materialien anzuwenden (Felsen, Eis, Permafrost-Böden und "synthetischen Gesteinen"). 

• LabQuake wird Computer Tonographie-fähig, so dass es in der Zukunft mit Nah-Echtzeit-CT-Scanning ausgerüstet werden kann, um in nahezu Echtzeit die Permeabilitätserzeugung und Seismizität zu korrelieren.

 
Direct link to Lay Summary Last update: 08.05.2017

Responsible applicant and co-applicants

Associated projects

Number Title Start Funding scheme
157772 HighSTEPS : HighStrainTEmperaturePressureSpeed 01.10.2015 R'EQUIP
153931 Risk Governance of Deep Geothermal and Hydro Energy 01.11.2014 NRP 70 Energy Turnaround

Abstract

Earthquakes are to a first order a scale invariant process, which can be studied over at least 18 orders of magnitude. Much has been learned in the past 40 years about the physics of earthquakes from laboratory studies under controlled and repeatable conditions. The LabQuake machine (LabQuake) proposed here builds on this tradition and moves lab-scale studies of earthquake related phenomena to the next level. LabQuake is partially motivated by a new and urgent need to understand and, as much as feasible, control induced earthquakes, anthropogenic events that challenge many GeoEnergy applications around the world. LabQuake, a novel and highly flexible triaxial apparatus with a unique seismic monitoring system, will enable a wide range of studies aimed at better understanding fracture propagation triggered by fluid pressure propagation through micro-seismicity and creep, as well as the coupling between permeability creation and fracture propagation. LabQuake will allow for systematic experimental investigations of the effects of pore-fluid variation in fractured media by measuring poroelastic, mechanical, hydraulic and thermal properties as well as acoustic emissions of intact and fractured rocks, considering various stress regimes and different fracture orientations representative of the upper crust conditions. The system we have designed will enable ground breaking research through a number of unique features: •LabQuake will be equipped with a new generation of acoustic emission sensors that are smaller, better calibrated, high temperature resistant and allow continuous data acquisition. In addition, larger sample sizes and specifically designed electrical feedthroughs will allow to record the seismic wave field at up to 64 locations, 2-10 times more than previously possible. This will greatly improve precision, accuracy and completeness of seismic data, allowing us to overcome many of the limitations of past studies and enable new kind of researches. Moreover, we will conduct dense in-situ deformation measurements for better calibrating aseismic and poroelastic processes that are likely playing a key role in permeability creation and induced seismicity. •LabQuake will feature a flexible and modular design, allowing for a diverse set of pressure vessels. It will operate over a wide range of environmental parameters: From - 20°C - 300°C and up to 300 MPa confining pressure, 5’000 kN actuator force and a large maximum sample size of 7,62 cm (3 inches). These parameters will allow experimentation on a wide range of materials (rocks, ice, permafrost soils, and “synthetic rock” which are custom-designed by using emerging 3D printing technologies) and is ideally suited to address some of the grand challenges in understanding earthquake processes related to natural and anthropogenic earthquakes and poroelastic behavior. •LabQuake will be CT-ready, so that it can be equipped in the future with near-real-time CT scanning for correlating in near-real-time the permeability creation and seismicity. LabQuake strives to bring together the best knowledge from laboratory related research with the advanced seismic processing tools and knowledge available in network seismology, statistical seismology and induced seismicity analysis. It will allow studying space-time evolution of microseismic events under a wider range of experimental constraints in unprecedented detail. This world-unique equipment will enable the modeling, forecasting, and testing tools that allow higher quality, hypothesis driven research on natural and induced earthquakes.
-