Project

Back to overview

Time resolved and stimulated Raman spectroscopy

English title Time resolved and stimulated Raman spectroscopy
Applicant Zardo Ilaria
Number 170741
Funding scheme R'EQUIP
Research institution Departement Physik Universität Basel
Institution of higher education University of Basel - BS
Main discipline Condensed Matter Physics
Start/End 01.12.2016 - 30.11.2018
Approved amount 277'000.00
Show all

All Disciplines (2)

Discipline
Condensed Matter Physics
Material Sciences

Keywords (6)

Coherent Antistokes Raman; pump-probe; Raman; time resolved; phonons; low dimensional systems

Lay Summary (Italian)

Lead
I fononi sono quasi-particelle che descrivono le vibrazioni atomiche all’interno di un reticolo. In particolare sono determinanti nelle proprietà termiche di un materiale e nella propagazione del suono in un mezzo.La progettazione e realizzazione di specifiche proprietà fononiche necessita di nuovi metodi sperimentali e teorici, specialmente quando viene combinata a sistemi con dimensionalità ridotta. D'altro canto la combinazione di progettazione di fononi e riduzione delle dimensioni di un sistema è una delle strategie più promettenti per il controllo delle proprià termiche.
Lay summary

Soggetto e obiettivo

Il nostro obiettivo è lo studio della dinamica dei fononi in nanostrutture. A tal fine realizzeremo un apparato sperimentale per ottenere misure di diffusione inelastica della luce (spettroscopia Raman) risolte in tempo. Inoltre, la stessa strumentazione ci permetterà di realizzare anche esperimenti di spettroscopia Raman Coerente anti-Stoke. In questo caso, specifiche vibrazioni reticolari vengono eccitate in modo risonante e il segnale è di ordini di grandezza più intenso dell'emissione Raman spontanea. Questo tipo di misure è altamente sofisticato e richiede l'utilizzo di tre o quattro fasci laser.

 

Contesto socio-scientifico

La ricerca proposta permetterà una comprensione maggiore della fisica dei fononi e quindi una maggiore capacità di controllo e progettazione delle proprietà termiche delle nanostrutture. Questo è un ingrediente fondamentale per migliorare l’efficienza di dispositivi termoelettrici che sono alla base di una delle tecnologie per le energie rinnovabili. Inoltre, le tecniche sperimentali sviluppate interessano l'intera comunità scientifica.

Direct link to Lay Summary Last update: 04.01.2017

Responsible applicant and co-applicants

Collaboration

Group / person Country
Types of collaboration
Prof. Stefano Roddaro, NEST, Scuola Normale Superiore Italy (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Prof. Dominik Zumbühl, Quantum Coherence Lab, Department of Physics, University of Basel Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Assist. Prof. Dr. Rinaldo Trotta, Nano photonics Group, Johannes Kepler University of Linz Austria (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Lucia Sorba, Nest, CNR Nano Italy (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Dr. Sonia Conesa-Boj, Quantum Trasport Group, Delft University of Technology Netherlands (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Prof. Daniel Loss, Condensed Matter Theory Group, Department of Physics, University of Basel Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Prof. Richard J. Warburton, Nano-Photonics Group, Department of Physics, University of Basel Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Prof. Martino Poggio, Poggio Lab, Department of Physics, University of Basel Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Prof. Erik Bakkers, Photonics and Semiconductor Nanophysics, Dep. of Physics, TU/e (Eindhoven) Netherlands (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Prof. Jelena Klinovaja, Condensed Matter Theory Group, Department of Physics, University of Basel Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Prof. Paolo Postorino, High Pressure Spectroscopy Lab, Sapienza Università di Roma Italy (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Francesco Mauri, Physics Department, Sapienza Università di Roma Italy (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Prof. Patrick Maletinsky, Quantum-sensing lab, Department of Physics, University of Basel Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Dr. Sébastien Plissard, Materials and Processes for Nanoelectronics Group, CNRS-LAAS France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Prof. Christian Schönenberger, Nanoelectronics Group, Department of Physics, University of Basel Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure

Associated projects

Number Title Start Funding scheme
165784 Nanophononics: Phonon transport and interference in nanostructures 01.04.2016 Project funding (Div. I-III)
189924 Hydronics 01.06.2020 Sinergia
184942 Phonon Interference in nanostructures 01.04.2019 Project funding (Div. I-III)

Abstract

The manipulation of phonons is a challenging objective, which holds the promise of a step forward in the understanding of quantum physics and corresponds to the manipulation of sound and heat at the single quantum level. Therefore, the recently growing research field called “phononics” has great potential also for new technological applications.Besides that phonons can be exploited for thermal logic gates and thermal memory, as recently proposed, they play a crucial role also in quantum information via spin- or electron-phonon interaction. Phonon management and control over the interaction between phonons and charges, spins or photons is key to develop electronic, optoelectronic, quantum, sonic and thermal devices. However, phonon engineering requires new theoretical and experimental methods, especially when combined with low dimensional physics, which is one of the most promising routes for thermal management. We want to investigate the phonon dynamics in nanostructures such as nanowires. To this end, we want to establish sophisticated experimental techniques based on time resolved and pump-probe Raman scattering. Therefore, the applicant is requesting funding for a mode-locked femtoscond tunable laser system and a triple spectrometer system with ultrafast high efficiency detector. This equipment will be installed in state-of-the-art laboratories of the applicant in the Department of Physics.The proposed experiments are a challenging objective, which is however well founded on the expertise of the applicant.
-