Project

Back to overview

iceCP-TOF: ultrahigh-resolution records in ice core research using novel Inductively Coupled Plasma - Time Of Flight - Mass Spectrometry (ICP-TOF-MS)

English title iceCP-TOF: ultrahigh-resolution records in ice core research using novel Inductively Coupled Plasma - Time Of Flight - Mass Spectrometry (ICP-TOF-MS)
Applicant Fischer Hubertus
Number 170739
Funding scheme R'EQUIP
Research institution Klima- und Umweltphysik Physikalisches Institut Universität Bern
Institution of higher education University of Berne - BE
Main discipline Other disciplines of Physics
Start/End 01.01.2017 - 31.12.2018
Approved amount 276'000.00
Show all

All Disciplines (2)

Discipline
Other disciplines of Physics
Other disciplines of Environmental Sciences

Keywords (5)

aerosol; paleoclimate; mass spectrometry; ice cores; biogeochemical cycles

Lay Summary (German)

Lead
Ultrahochauflösende Eiskern-Spurenstoffmessungen mit einem neuen "time-of-flight" Massenspektrometer
Lay summary

Polare und hochalpine Eisbohrkerne stellen ein einzigartiges Klima- und Umweltarchiv dar. So sind in Eisbohrkernen chemische Spurenstoffe enthalten, die die natürliche (z.B. Mineralstaub, Meersalzaerosol) und vom Menschen verursachte (z.B. Industrie- und Autoabgase) Belastung der Atmosphäre mit Aerosolpartikeln widerspiegeln. Mithilfe geeigneter hochpräziser analytischer Verfahren können die zeitlichen Konzentrationsänderungen dieser Spurenstoffe über viele Jahrtausende rekonstruiert werden. Bisherige Methoden erlaubten an Standorten mit ausreichender Niederschlagsrate sogar die Auflösung jahreszeitlicher Schwankungen der Spurenstoff-Konzentrationen, aber aufgrund der Ausdünnung von Eis mit der Tiefe ist dies nur über einen beschränkten Zeitraum möglich. Deshalb ist die Auflösung schneller Konzentrationsschwankungen im tiefsten Eis alpiner Kerne oder auch der geplanten "Oldest Ice" Bohrung in der Antarktis, die erstmals Aerosolzeitreihen über die letzten 1.5 Millionen Jahre liefern soll, bisher nicht möglich. Darüberhinaus sind Mineralstaubkomponenten im Eis in gelöster oder partikulärer Form vorhanden. Die chemische Zusammensetzung letzterer ist nur unzureichend bekannt, da die analytische Auflösung bisher nicht ausreicht, um partikläre Aerosolteilchen von gelösten Bestandteile zu separieren.

Die neuartige Kombination von induktiv gekoppelter Plasma-Massenspektrometrie mit einem „time-of-flight“ Detektor kann diese Hürden überwinden. Ziel dieses Gemeinschaftsprojekts von Eiskernwissenschaftlern der Universität Bern und des Paul Scherrer Instituts ist es deshalb an der Abteilung für Klima- und Umweltphysik der Universität Bern eine solche Analyse zu etablierten und mit dem in der Abteilung entwickelten Schmelzanalyseverfahren für Eisbohrkerne zu verknüpfen.

Direct link to Lay Summary Last update: 21.11.2016

Responsible applicant and co-applicants

Publications

Publication
Fe2+ in ice cores as a new potential proxy to detect past volcanic eruptions
Burgay François, Erhardt Tobias, Lunga Damiano Della, Jensen Camilla Marie, Spolaor Andrea, Vallelonga Paul, Fischer Hubertus, Barbante Carlo (2019), Fe2+ in ice cores as a new potential proxy to detect past volcanic eruptions, in Science of The Total Environment, 654, 1110-1117.

Collaboration

Group / person Country
Types of collaboration
Dr. Paul Vallelonga/Prof. Dorthe Dahl Jensen, Centre for Ice and Climate, University of Copenhagen Denmark (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Margareta Hansson, University of Stockholm Sweden (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Joe McConnell, Desert Research Institute, Reno United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Eric Wolff, Earth Sciences Department, University of Cambridge Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Carlo Barbante Italy (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Dr. Rob Mulvaney, British Antarctic Survey, Cambridge Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Dr.M. Hörhold/Dr. J. Freitag/Dr. S. Kipfstuhl, Alfred-Wegener-Institute, Bremerhaven Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Dr. K. Goto-Azuma, National Institute for Polar Research, Tokyo Japan (Asia)
- Publication
Dr. Pascal Bohleber, Institut für Umweltphysik, Universität Heidelberg Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results

Awards

Title Year
Hans Oeschger Medal, European Geoscience Union 2018
Dansgaard Award, American Geophysical Union 2017

Associated projects

Number Title Start Funding scheme
147174 Climate and Environmental Physics 01.04.2013 Project funding (Div. I-III)
164190 EGRIP: The Swiss Contribution 01.04.2016 Research Infrastructure

Abstract

For many decades ice core research at the University of Bern has been at the forefront in reconstructions of climate and environmental changes providing benchmark data sets for temperature, greenhouse gas and atmospheric aerosol variations over up to the last 800,000 years. Among others, it has internationally pioneered the development of continuous melt water analysis for selected dissolved and particulate aerosol tracers and applied it to many km of ice core from Greenland and Antarctica. This so called Continuous Flow Analysis (CFA) provides ice core chemistry records in 1 cm resolution. With this high resolution it was the base for reconstructions of seasonal and interannual variability in atmospheric aerosol mobilization and transport but also for layer counted ice core age scales over thousands of years. However, upcoming ice core projects such as the “Oldest Ice” project in Antarctica, which has the goal to expand the ice core climate record to the last 1.5 Myr, concentrate on the bottom-most ice, where the timescale of the climate record is drastically compressed due to glacier flow. To provide the aerosol record in this highly thinned ice in sufficient resolution, a breakthrough in ice core resolution using novel analytical approaches for multi-parameter ice core chemistry is required. Moreover, the total ice core aerosol record consists of dissolved components and insoluble mineral dust particles. A separation of these two contributions would require the detection and chemical characterization of individual dust particles. This has not been attempted yet, due to lack of temporal resolution in analytical techniques. The novel Inductively Coupled Plasma-Time Of Flight-Mass Spectrometer (ICP-TOF-MS) instrument pioneered by TOFWERK AG, Thun, provides the means to overcome these limitations. Accordingly, application of this new technique in ice core research will push forward the limits of our understanding of eolian dust sources and long-range transport of mineral dust aerosol to polar and also high altitude regions. Accordingly, the goal of the project iceCPTOF is to acquire such an instrument and to implement it in our well-established CFA ice core analysis system at the University of Bern.
-