Project

Back to overview

Stellenmarktmonitor Schweiz (SMM)

English title Swiss Job Market Monitor (SJMM)
Applicant Buchmann Marlis
Number 170401
Funding scheme Research Infrastructure
Research institution Soziologisches Institut Universität Zürich
Institution of higher education University of Zurich - ZH
Main discipline Sociology
Start/End 01.01.2017 - 31.12.2020
Approved amount 684'096.00
Show all

All Disciplines (6)

Discipline
Sociology
Communication sciences
Education and learning sciences, subject-specific education
Science of management
Psychology
Economics

Keywords (5)

Vacancies; Job Opportunities; Personnel Recruitment; Labor Market; Skill Demand

Lay Summary (German)

Lead
LeadDer Stellenmarkt-Monitor Schweiz (SMM) (www.stellenmarktmonitor.uzh.ch) ist ein bis auf 1950 zurückgehendes, kontinuierliches Monitoring des Schweizerischen Stellenmarktes. Diese einmalige Datenbasis enthält Mikrodaten zu Stelleninseraten, die für die Schweizerische Wirtschaft repräsentativ und über lange Zeiträume vergleichbar sind. Der SMM stellt über FORS (Schweizer Kompetenzzentrum Sozialwissenschaften, Lausanne) der internationalen wissenschaftlichen Gemeinschaft einen scientific use file (SUF) zur Verfügung, womit bislang vernachlässigte innovative Fragestellungen zum lang- und kurzfristigen Wandel des Qualifikationsbedarfs, zu Ungleichheiten auf dem Arbeitsmarkt oder zur Bedeutung der Qualifikationsnachfrage für die Mobilität im Berufsverlauf nun untersucht werden können.
Lay summary

Inhalt und Ziel des Forschungsprojekts

Jedes Jahr stellt der SMM der internationalen wissenschaftlichen Gemeinschaft die aufbereiteten Daten des SMM aus dem Vorjahr als SUF zur Verfügung, nachdem 2015 der gesamte aufbereitete Datensatz (1950-2014) an FORS geliefert wurde. Darüber hinaus sollen in der vierjährigen Laufzeit dieses Forschungsinfra­struk­tu­rprojek­ts die Beobachtungsinstrumente (Monitoring) hinsichtlich der Erfassung von Stelleninseraten so weit wie möglich automatisiert werden. Ein weiteres Ziel ist es, so viele interessierende Charakteristika in den Stelleninseraten wie möglich semi-automatisch und aus­gewählte Merkmale vollautomatisch codieren zu können.  Damit kann in Aussicht gestellt werden, zusätzliche Variablen in die SUF Files zu integrieren. Schliesslich zeigt das SMM Team mit eigenen wissenschaftlichen Beiträgen in peer-reviewed internationalen Zeitschriften das wissenschaftliche Potential des SMM Datensatzes auf.

Direct link to Lay Summary Last update: 27.12.2016

Responsible applicant and co-applicants

Employees

Associated projects

Number Title Start Funding scheme
187333 Monitoring Task and Skill Profiles in the Digital Economy: Employers' Changing Skill Demand and Workers' Career Outcomes 01.05.2020 NRP 77
146515 Transforming the Swiss Job Market Monitor into a Scientific-Use-Survey 01.06.2013 Research Infrastructure
165959 Employers' Demand for Almost-Full-Time Workers: The Diffusion of Employment Practices across Firms 01.10.2016 Project funding (Div. I-III)

Abstract

The Swiss Job Market Monitor (SJMM) (www.stellenmarktmonitor.uzh.ch) is a unique longitudinal database, providing micro data on advertised jobs that are representative of the Swiss economy and comparable across long periods of time. The continuous monitoring spans the period from 1950 to 2016 (and onward), including a total of 64,000 job ads representing 75,000 job profiles. For each advertised job, the SJMM provides over 90 coded characteristics, processed according to standardized coding procedures and ready for statistical analysis. Such a dataset opens up a wide range of new research opportunities and helps fill major gaps in existing fields of research (e.g., labor market mismatch, the diffusion or evolution of recruiting trends, and the impact of skill demand on career mobility).From June 2013 to May 2016, the SNSF has funded the SJMM as a social science research infrastructure project (Nr. 10FI14_146515). The objectives of this first funding period were to transform the SJMM into a scientific use file (SUF) 1950-2014, to release the first annual update (2015 data), and to engage in SJMM dissemination activities. All three goals have been accomplished on schedule. The SUF 1950-2014 was released in August 2015 (FORS), consisting of a corpus of original advertisement texts (with source information and year of publication), a data file processed for statistical analyses (with 92 coded variables), and extensive documentation (user manual and codebook). The first annual update (2015) will be released in June 2016. For dissemination, a user workshop was held at the University of Zurich on April 12, 2016, drawing interested researchers from a variety of institutions. The growing number of SUF downloads since August 2015 document substantial interest in the dataset.There are four goals for the 2017-2020 period:1.Monitoring and annual SUF release - This includes: (a) maintaining the monitoring instruments (observing the universe of advertising channels, updating sampling procedures); (b) recording the full advertisement texts (6,000 job ads annually); (c) processing the job ads for statistical analyses using standardized coding procedures (4,000 job ads annually); (d) conducting the annual corporate survey (N=1,500) to monitor employers’ recruitment practices, and (e) releasing the annual SUF update.2.Developing monitoring instruments - This involves: (a) developing crawler applications to download the lists of ads in job portals, extract and store the information, and explore the practicality of advanced crawling (i.e., parsing job ad texts while crawling); (b) further developing semi-automated coding procedures and fully-automated coding of selected characteristics; (c) advancing the survey instruments by eventually including social media/professional networks into the monitoring; (d) testing the impact of change in employers’ advertising practices on the accuracy of monitoring job vacancies.3.Provision of additional SUF variables: The SJMM will invest in the development of applications enabling automated structuring and automated processing of job ad information that has not yet (or only minimally) undergone standardized coding procedures (e.g., company characteristics, job tasks). This involves (a) development and evaluation of applications related to automated text zoning (i.e.,the identification of text passages by theme) and (b) development and evaluation of applications related to automated information retrieval. 4.State-of-the-art research, high-ranking publications, and international networking: To further demonstrate the SJMM scientific potential to the international scientific community and to encourage its use, we will continue to conduct high-quality research, publish in high-ranking peer-reviewed journals, and further engage in interdisciplinary and international networking and user support.
-