Project

Back to overview

Characterization of defects by advanced x-ray diffraction techniques to evaluate deformation stages in micro-crystals

Applicant Van Petegem Steven
Number 169753
Funding scheme Project funding (Div. I-III)
Research institution Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Material Sciences
Start/End 01.02.2017 - 31.01.2020
Approved amount 248'835.00
Show all

All Disciplines (2)

Discipline
Material Sciences
Condensed Matter Physics

Keywords (8)

Size-effect; Plasticity; Ptychography; Coherent; Diffraction; X-ray; Defects; Micromechanics

Lay Summary (German)

Lead
Die Miniaturisierung von Bauteilen und Prozessen ist, seit Anbeginn der 2. industriellen Revolution und spätestens seit der kommerziellen Herstellung von Mikroelektronik und Computern, die vorrangige Methode um Prozesseffizienz zu steigern und Produktionskosten zu senken. Wenn jedoch die Dimensionen der Einzelbauteile sich dem Mikrometer oder Sub-Mikrometer Bereich annähern, wie dies heute immer öfter der Fall ist, können die mechanischen Eigenschaften dieser Bauteile und schlussendlich der gesamten Apparatur drastisch beeinflusst werden. Die Gründe für dieses Verhalten sind noch ziemlich schlecht verstanden
Lay summary

Inhalt und Ziel des Forschungsprojekts

Das übergeordnete Ziel dieses Projektes ist es, ein besseres Verständnis der Mechanik von Kleinobjekten zu gewinnen. Unsere Bemühungen werden sich in erster Instanz auf das Verhalten von Indiumantimonid, einem III-V-Verbindungshalbleiter, konzentrieren.  Diese werden zum Beispiel in schnellen Transistoren und in der Infrarot-Astronomie eingesetzt. 

Experimentell werden wir sogenannte Eindringversuche verwenden.  In diesen in-situ Tests wird die innere Struktur eines Objekts verfolgt, während eine externe Kraft auf dieses Objekt angewendet wird.  

Zur Verwirklichung dieser Tests werden wir soweit existent auf modernste Röntgentechniken zurückgreifen oder in deren Abwesenheit selbst entwickeln.  Ziel ist es (i) die Anhäufung von Defekten innerhalb der Mikrokristalle in Echtzeit zu verfolgen und (ii) diese Veränderungen, i.e. entlang der verschiedenen Stadien der Verformung, in hochauflösenden zwei und dreidimensionalen Bildern darzustellen.

Ein Großteil dieses Projektes wird der Entwicklung neuer robuster Röntgencharakterisierungsmethoden gewidmet werden.  Dies ist notwendig, da etablierte Röntgentechniken sich entweder auf sehr kleine Probenvolumen beschränken oder keine Raum aufgelösten Details des zu untersuchenden Materials bereitstellen.

 

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Der erfolgreiche Abschluss dieses Forschungsprojekts wird uns einen neuen und wichtigen Einblick in die Verformungsmechanismen von Kleinobjekten gewährleisten.  Der gewonnene Wissenszuwachs wird es uns ermöglichen, die mechanischen Eigenschaften von mikro- und nanoskopisch kleinen Objekten, durch die Anpassung ihrer Mikrostruktur, weiter zu optimieren.  Darüber hinaus ist vorgesehen, dass die in diesem Project entwickelten Techniken weiterführend für eine effektive quantitative Diagnostik und Fehlertechnik im Bereich der Nanotechnologie eingesetzt werden.

Direct link to Lay Summary Last update: 05.05.2017

Responsible applicant and co-applicants

Employees

Name Institute

Publications

Publication
Plastic Deformation of InSb Micro-Pillars: A Comparative Study Between Spatially Resolved Laue and Monochromatic X-Ray Micro-Diffraction Maps
SadatTariq (2018), Plastic Deformation of InSb Micro-Pillars: A Comparative Study Between Spatially Resolved Laue and Monochromatic X-Ray Micro-Diffraction Maps, in Residual Stresses 2018, Materials Reserarch Forum llc, Millersville PA, USA.
Visualization of Crystallographic Defects in InSb Micropillars by Ptychographic Topography
Verezhak Mariana, Van Petegem Steven, Jacques Vincent, Godard Pierre, Wakonig Klaus, Thilly Ludovic, Diaz Ana (2018), Visualization of Crystallographic Defects in InSb Micropillars by Ptychographic Topography, in Microscopy and Microanalysis, 24(S2), 18-21, Cambridge University Press, Cambridge 24(S2), 18-21.

Collaboration

Group / person Country
Types of collaboration
Angel Rodriguez-Fernandez, European XFEL Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Workshop on Coherence at ESRF-EBS Talk given at a conference Ptychographic topography in forward and Bragg direction for microscopic strain characterization 09.09.2019 Grenoble, France Thilly Ludovic; Godard Pierre; Jacques Vincent; Diaz Ana; Van Petegem Steven; Renault Pierre-Olivier; Verezhak Mariana;
ECRS10 Talk given at a conference Plastic deformation of Insb micro-pillars: a comparative study between spatially resolved Laue and monochromatic X-Ray micro-diffraction maps 11.09.2018 Leuven, Belgium Renault Pierre-Olivier; Thilly Ludovic; Verezhak Mariana; Godard Pierre; Van Petegem Steven; Jacques Vincent; Diaz Ana;
XTOP 2018 XIV Biennial Conference of High Resolution X-ray Diffraction and Imaging Talk given at a conference Strain field in deformed InSb micropillars revealed by in-situ Laue microdiffraction and post-mortem ptychographic topography 03.09.2018 Bari, Italy Van Petegem Steven; Diaz Ana; Thilly Ludovic; Jacques Vincent; Verezhak Mariana; Godard Pierre; Renault Pierre-Olivier;
XRM 2018, International Conference X-ray Microscopy, Talk given at a conference Visualization of Crystallographic Defects in InSb Micropillars by Ptychographic Topography 19.08.2018 Saskatoon, Canada Verezhak Mariana; Renault Pierre-Olivier; Diaz Ana; Jacques Vincent; Van Petegem Steven; Thilly Ludovic;
MRS Fall Meeting Talk given at a conference Imaging Strain Fields by ptychographic Topography 26.11.2017 Boston, United States of America Van Petegem Steven; Verezhak Mariana; Diaz Ana;
Euromat 2017 Talk given at a conference Imaging Strain Field by Ptychography Topography 17.09.2017 Thessaloniki, Greece Verezhak Mariana; Van Petegem Steven; Diaz Ana;
TMS Annual Meeting Talk given at a conference Imaging Strain Fields by Ptychographic Topography 26.02.2017 San Diego, United States of America Diaz Ana; Van Petegem Steven;


Awards

Title Year
Marie Skodowska-Curie grant (agreement No 701647) 2017

Associated projects

Number Title Start Funding scheme
175905 Three-dimensional elemental mapping on the nanoscale combining X-ray fluorescence and ptychographic tomography 01.07.2018 Project funding (Div. I-III)
149294 Tensile strained Ge laser for Si-based opto-electronics 01.10.2013 Project funding (Div. I-III)

Abstract

The project entitled “Characterization of defects by Advanced X-ray Diffraction techniques to evaluate deformation stages in micro-crystals” (CharADiff) aims at gaining a detailed understanding of the mechanics of small scale objects (micro and nano-crystals) by the implementation of an unprecedented combination of recent and specifically-developed in situ cutting-edge X-ray diffraction techniques: 1) in situ coherent X-ray diffraction that enables to detect and evaluate the number of lattice defects (dislocations) in small scale crystals during mechanical solicitation; 2) in situ micro-Laue diffraction that allows for studying the nature and sequence of activated dislocation slip systems during plastic deformation of small objects; 3) post-mortem Bragg ptychography that provides a 3D image of the displacement field caused by lattice defects left in the deformed objects and 4) ptychographic topography, a novel technique developed in this project, to image individual lattice defects while remaining compatible with future in situ deformation studies. These techniques are applied to a unique system: InSb semiconductor micro-crystals of initial excellent crystalline quality, whose mechanical properties have been already thoroughly studied, therefore being a robust benchmark.The outcomes of this original methodology are two-fold:- developing a tool box combining in situ and post-mortem advanced diffraction techniques to characterize the deformation response of small scale objects (deformation stages and lattice defects storage): this will enrich the current knowledge on small scale mechanics, and provide answers to some of the open questions still remaining in Materials Science on the effects of size reduction;- assessing the complementarity between some of the most recent diffraction techniques developed at synchrotrons with the perspective to push their applicability to the forefront of their current use. Moreover, a new non-destructive imaging technique will be developed, ptychographic topography, with the strong perspective to be implemented within an in situ setup, as another step forward.The impact of the project is potentially far beyond the frontiers described above, in particular in the field of nanotechnology, where the X-ray diffraction techniques developed here could constitute non-destructive solutions to assess the crystalline quality of small-scale crystals that are the building blocks of miniaturized devices, therefore allowing for quantitative diagnostics and defect engineering.To guarantee the success of this 36 month-project, a well thought consortium of French and Swiss experts has been settled, with strong complementarity in the fields of experimental and simulation approaches, as well as Materials Science and diffraction. A total of 86.4 person-months will be deployed by the consortium, including 9 permanent staffs and 2 post-doctoral fellows.
-