Project

Back to overview

Spin-spectroscopy with ultracold neutrons - Searching for dark matter and lorentz violation using spin-precessing neutrons

English title Spin-spectroscopy with ultracold neutrons - Searching for dark matter and lorentz violation using spin-precessing neutrons
Applicant Schmidt-Wellenburg Philipp
Number 169596
Funding scheme Project funding (Div. I-III)
Research institution Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Particle Physics
Start/End 01.09.2017 - 31.08.2020
Approved amount 174'508.00
Show all

Keywords (5)

Dark matter; Spin precession; Lorentz violation; Ultracold neutrons; Spin echo

Lay Summary (German)

Lead
Das weltweit präziseste Experiment zur Suche nach einem elektrischen Dipolmoment des Neutrons am Paul Scherrer Institut eröffnet einzigartige Möglichkeiten grundlegende Fragen der Teilchenphysik zu untersuchen. Der primäre Grund der Suche nach einem nEDM mit ultrakalten Neutronen ist der Versuch zu klären warum beim Urknall keine Antimaterie entstand. Dasselbe Experiment wird nun verwendet um wichtige offene Fragen des beobachtbaren Universums zu untersuchen: Aus was besteht die dunkle Materie, die notwendig ist um die Entstehung von Galaxien zu erklären? Ist die Lorentz Symmetrie, ein essentieller Bestandteil aller modernen physikalischen Theorien, tatsächlich universell gültig?
Lay summary

Inhalt und Ziel des Forschungsprojekts 

Ultrakalte Neutronen sind freie Neutronen mit Geschwindigkeiten von wenigen Metern pro Sekunde und können in Vakuumbehältern für viele Minuten eingesperrt und beobachtet werden. Neutronen haben ausserdem einen intrinsischen Spin ähnlich einer kleinen Kompassnadel. In magnetischen Feldern richtet sich der Spin auf zwei Arten relativ zum Magnetfeld aus. Die Kombination dieser beiden Eigenschaften ermöglicht hochpräzise Messungen der Neutron Präzessionsfrequenz, der „Rotationsgeschwindigkeit des Neutronenspins. Für diese Messungen wird Ramseys Methode der separierten oszillierender Felder (Nobelpreis 1989) verwendet, die eine Genauigkeit von einem Zehntelmillionstel (0.0000001) pro Tag am PSI ermöglicht.

Neue Physik - Kräfte, Teilchen und Felder die nicht Bestandteil des Standard Models sind - würden auch auf den Spin des Neutrons wirken, was  zu einer Änderung der Spin Präzessionsfrequenz der Neutronen führen würde.  Eine Veränderung  der Frequenz in Abhängigkeit eines elektrischen Feldes wäre ein klares Signal für ein elektrisches Dipolmoment. Ähnlich könnte ein kosmisches Hintergrundfeld oder dunkle Materie an den Spin des Neutrons koppeln und die Präzessionsfrequenz  verändern.

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts
Die Arbeit sucht Wechselwirkungen zwischen dunkler Materie und kosmischen. Die Messung eines Signals als auch eine Nichtbeobachtung liefert wichtige experimentelle Daten für erweiterte Modele der Teilchenphysik.

Keywords

Dunkle Materie, Lorentz Invarianz, Universum, elektrischer Dipolmoment, Teilchenphysik, Spin, ultrakaltes Neutron, Präzession, Präzision, neue Physik

Direct link to Lay Summary Last update: 28.09.2016

Responsible applicant and co-applicants

Employees

Name Institute

Associated projects

Number Title Start Funding scheme
177008 Field Generation and Control System for the n2EDM spectrometer 01.12.2017 R'EQUIP
144473 Search for the neutron EDM at the high intensity ultracold neutron source at PSI with an upgraded high sensitivity spectrometer - Follow-up application 01.10.2012 Project funding (Div. I-III)
163413 Improving ultracold neutron intensities for frontier precision experiments in fundamental physics 01.11.2015 Project funding (Div. I-III)
186179 n2EDM: The next measurement of the neutron electric dipole moment 01.04.2019 FLARE

Abstract

The project proposes to search for physics beyond the standard model of particle physics (BSM) using the existing nEDM-spectrometer at the Paul Scherrer Institute. Beside the well known search for an electric dipole moment of the neutron the apparatus lends itself well to search for CPT and Lorentz invariance violating interactions as well as short range spin dependent forces resulting from axion like particles. For this purpose a novel spin-echo technique using ultracold neutrons (UCN), pioneered by the applicant, shall be studied in detail and its application optimized. This technique has the potential to significantly improve the assessment of systematic effects in spin precession experiments with UCN which will improve in combination with the currently accumulated data any previously published result on BSM physics.
-