Project

Back to overview

Exploring nanoscale magnetic phenomena using a quantum microscope

Applicant Maletinsky Patrick
Number 169321
Funding scheme Project funding (Div. I-III)
Research institution Departement Physik Universität Basel
Institution of higher education University of Basel - BS
Main discipline Condensed Matter Physics
Start/End 01.10.2016 - 30.09.2019
Approved amount 825'216.00
Show all

All Disciplines (2)

Discipline
Condensed Matter Physics
Other disciplines of Physics

Keywords (11)

Scanning probe microscopy; Nanofabrication; Solid state physics; Quantum optics; Magnetism; Magnetic imaging; Spin Physics; Carbon nanotubes; Diamond; Graphene; Quantum sensing

Lay Summary (German)

Lead
Die Genauigkeit, mit der eine physikalische Messgrösse bestimmt werden kann, ist ultimativ durch die Gesetze der Quantenmechanik gesetzt. “Quanten-Sensoren” erreichen diese Grenze und formen ein äusserst aktives Forschungsgebiet der modernen Quantenphysik. Ziel dieses Projektes ist es, bestehende Quanten-Sensoren für die magnetische Bildgebung auf der Nanoskala einzusetzen, um damit neuartige, nicht-triviale und potentiell nützliche Materialsysteme zu erforschen. Ein spezieller Fokus wird dabei auf nanomagnetischen Systemen, sowie zweidimensionalen Elektronensystemen, wie Graphen liegen.
Lay summary

Das Gebiet der Quanten-Sensorik, d.h. die Erforschung und Realisierung von Sensoren, deren Genauigkeit durch die Gesetze der Quantenmechanik bestimmt sind, hat in den letzten Jahren gewaltige Fortschritte gemacht. Insbesondere ist es heute möglich, solche Sensoren zur Bildgebung auf der Skala weniger Nanometer (1 Billion Nanometer = 1 Meter) einzusetzen und damit Resultate zu erzielen, welche mit klassischen Sensoren nicht zu erreichen wären. Diese experimentelle Realisierung von solch praktisch anwendbarer Quantensoden wurde massgeblich auch durch unsere Forschungsgruppe an der Universität Basel im Rahmen der Vorgängerarbeit zum vorliegenden Projekt voran getrieben.

Im Rahmen unseres aktuellen Projektes, werden wir unsere Quantensensoren auf zwei spezielle Materialsysteme anwenden: Dünne magnetische Filme und Nanopartikel, sowie Graphen - ein zweidimensionales Elektronensystem, dessen Entdeckung mit dem Nobelpreis 2010 ausgezeichnet wurde. Unser Fokus wird dabei auf dynamischen Eigenschaften dieser Materialien, wie die Beobachtung und Abbildung von ferromagnetischen Resonanzen und turbulentem Elektronentransport, liegen. Unsere Experimente werden dabei neue Einsichten in diese Materialsysteme liefern und unser fundamentales Wissen über diese Festkörpersysteme erweitern. Die damit gewonnenen Erkenntnisse werden mögliche Anwendungen von neuartigen magnetischen Materialien und von Graphen in der Hochleistungselektonik, der Datenspeicherung, sowie der Sensorik selber, näher zur Realität bringen. 

Direct link to Lay Summary Last update: 17.10.2016

Responsible applicant and co-applicants

Employees

Publications

Publication
Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems
Barfuss A., Kasperczyk M., Kölbl J., Maletinsky P. (2019), Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems, in Physical Review B, 99(17), 174102-174102.
Initialization of Single Spin Dressed States using Shortcuts to Adiabaticity
Kölbl J., Barfuss A., Kasperczyk M. S., Thiel L., Clerk A. A., Ribeiro H., Maletinsky P. (2019), Initialization of Single Spin Dressed States using Shortcuts to Adiabaticity, in Physical Review Letters, 122(9), 090502-090502.
Color Centers in Diamond as Novel Probes of Superconductivity
Acosta Victor M., Bouchard Louis S., Budker Dmitry, Folman Ron, Lenz Till, Maletinsky Patrick, Rohner Dominik, Schlussel Yechezkel, Thiel Lucas (2019), Color Centers in Diamond as Novel Probes of Superconductivity, in Journal of Superconductivity and Novel Magnetism, 32(1), 85-95.
Nanomagnetism of Magnetoelectric Granular Thin-Film Antiferromagnets.
Appel Patrick, Shields Brendan J, Kosub Tobias, Hedrich Natascha, Hubner Rene, FaSSbender Jurgen, Makarov Denys, Maletinsky Patrick (2019), Nanomagnetism of Magnetoelectric Granular Thin-Film Antiferromagnets., in Nano letters, 19, 1682.
Probing magnetism in 2D materials at the nanoscale with single-spin microscopy
Thiel L., Wang Z., Tschudin M. A., Rohner D., Gutiérrez-Lezama I., Ubrig N., Gibertini M., Giannini E., Morpurgo A. F., Maletinsky P. (2019), Probing magnetism in 2D materials at the nanoscale with single-spin microscopy, in Science, 364(6444), 973-976.
Advanced Fabrication of Single-Crystal Diamond Membranes for Quantum Technologies
Challier Michel, Sonusen Selda, Barfuss Arne, Rohner Dominik, Riedel Daniel, Koelbl Johannes, Ganzhorn Marc, Appel Patrick, Maletinsky Patrick, Neu Elke (2018), Advanced Fabrication of Single-Crystal Diamond Membranes for Quantum Technologies, in Micromachines, 9(4), E148.
Microwave Device Characterization Using a Widefield Diamond Microscope
Horsley Andrew, Appel Patrick, Wolters Janik, Achard Jocelyn, Tallaire Alexandre, Maletinsky Patrick, Treutlein Philipp (2018), Microwave Device Characterization Using a Widefield Diamond Microscope, in Physical Review Applied, 10(4), 044039.
Phase-controlled coherent dynamics of a single spin under closed-contour interaction
Barfuss Arne, Kölbl Johannes, Thiel Lucas, Teissier Jean, Kasperczyk Mark, Maletinsky Patrick (2018), Phase-controlled coherent dynamics of a single spin under closed-contour interaction, in Nature Physics, 14(11), 1087-1091.
Real-Space Probing of the Local Magnetic Response of Thin-Film Superconductors Using Single Spin Magnetometry
Rohner Dominik, Thiel Lucas, Mueller Benedikt, Kasperczyk Mark, Kleiner Reinhold, Koelle Dieter, Maletinsky Patrick (2018), Real-Space Probing of the Local Magnetic Response of Thin-Film Superconductors Using Single Spin Magnetometry, in Sensors, 18(11), 3790.
Real-Space Probing of the Local Magnetic Response of Thin-Film Superconductors Using Single Spin Magnetometry
Rohner Dominik, Thiel Lucas, Mueller Benedikt, Kasperczyk Mark, Kleiner Reinhold, Koelle Dieter, Maletinsky Patrick (2018), Real-Space Probing of the Local Magnetic Response of Thin-Film Superconductors Using Single Spin Magnetometry, in Sensors, 18(11), 3790.
Skyrmion morphology in ultrathin magnetic films
Gross I., Akhtar W., Hrabec A., Sampaio J., Martinez L. J., Chouaieb S., Shields B. J., Maletinsky P., Thiaville A., Rohart S., Jacques V. (2018), Skyrmion morphology in ultrathin magnetic films, in Physical Review Materials, 2(2), 024406.
Spin-lattice relaxation of individual solid-state spins
Norambuena A., Munoz E., Dinani H. T., Jarmola A., Maletinsky P., Budker D., Maze J. R. (2018), Spin-lattice relaxation of individual solid-state spins, in Physical Review B, 97(9), 094304.
Wide-Field Imaging of Superconductor Vortices with Electron Spins in Diamond
Schlussel Yechezkel, Lenz Till, Rohner Dominik, Bar-Haim Yaniv, Bougas Lykourgos, Groswasser David, Kieschnick Michael, Rozenberg Evgeny, Thiel Lucas, Waxman Amir, Meijer Jan, Maletinsky Patrick, Budker Dmitry, Folman Ron (2018), Wide-Field Imaging of Superconductor Vortices with Electron Spins in Diamond, in Physical Review Applied, 10(3), 034032.
Deterministic Enhancement of Coherent Photon Generation from a Nitrogen-Vacancy Center in Ultrapure Diamond
Riedel Daniel, Sollner Immo, Shields Brendan J., Starosielec Sebastian, Appel Patrick, Neu Elke, Maletinsky Patrick, Warburton Richard J. (2017), Deterministic Enhancement of Coherent Photon Generation from a Nitrogen-Vacancy Center in Ultrapure Diamond, in Physical Review X, 7(3), 031040.
Hybrid continuous dynamical decoupling: a photon-phonon doubly dressed spin
Teissier Jean, Barfuss Arne, Maletinsky Patrick (2017), Hybrid continuous dynamical decoupling: a photon-phonon doubly dressed spin, in Journal of Optics, 19, 044003.
Purely antiferromagnetic magnetoelectric random access memory
Kosub Tobias, Kopte Martin, Hühne Ruben, Appel Patrick, Shields Brendan, Maletinsky Patrick, Hübner René, Liedke Maciej Oskar, Fassbender Jürgen, Schmidt Oliver G., Makarov Denys (2017), Purely antiferromagnetic magnetoelectric random access memory, in Nature Communications, 8, 13985-13985.
Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer
Gross I., Akhtar W., Garcia V., Martinez L. J., Chouaieb S., Garcia K., Carretero C., Arthelemy B., Appel P., Maletinsky P., Kim J. -V., Chauleau J. Y., Jaouen N., Viret M., Bibes M., Fusil S., Jacques V. (2017), Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer, in Nature, 549(7671), 252-252.
Fabrication of all diamond scanning probes for nanoscale magnetometry
Appel Patrick, Neu Elke, Ganzhorn Marc, Barfuss Arne, Batzer Marietta, Gratz Micha, Tschöpe Andreas, Maletinsky Patrick (2016), Fabrication of all diamond scanning probes for nanoscale magnetometry, in Review of Scientific Instruments, 87(6), 063703-063703.

Datasets

Replication Data for: Probing magnetism in 2D materials at the nanoscale with single spin microscopy

Author Thiel, Lucas
Persistent Identifier (PID) 10.5281/zenodo.2574907
Repository Zenodo


Collaboration

Group / person Country
Types of collaboration
Prof. A. Morpurgo, University of Geneva Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. J. Wrachtrup, Universität Stuttgart Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Dr. Vincent Jacques (chargé de recherche, CNRS), CNRS, University of Montpellier France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Profs. Dieter Kölle and Reinhold Kleiner, University of Tübingen Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Gianni Blatter and Prof. S.D. Huber, ETH Zürich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Exchange of personnel
Prof. K. Karrai, Attocube Systems, Munich Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
- Industry/business/other use-inspired collaboration
Dr. T. Debuisschert, Thales Research and Technology France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Industry/business/other use-inspired collaboration
Dr. J. V. Kim, institut d'électronique fondamentale (IEF), Paris France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. D. Grundler, EPFL Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Prof. Alex Högele, LMU München Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Prof. C. Schönenberger, University of Basel Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Gordon Research Conference on spin dynamics in nanostructures Individual talk Single Spin Magnetic Imaging of Spin Texturess in Antiferromagnets and 2D Materials 09.07.2019 Les Diablerets, Switzerland Maletinsky Patrick;
UCD Conway Institute Nanoscale Function Group Seminar Individual talk Diamond parabolic reflectors for efficient scanning nitrogen-vacancy magnetic imaging 27.06.2019 Dublin, Ireland Shields Brendan;
QSIT colloquium Individual talk Quantum Sensing of atomically thin magnets 20.06.2019 ETH Zürich, Switzerland Maletinsky Patrick;
Gordon Research Conference on Quantum sensing Talk given at a conference Quantum Sensing of Magnetism in Two-Dimensional Condensed Matter Systems 05.06.2019 Hong Kong, China Maletinsky Patrick;
Latsis Symposium 2019 on Diamond Photonics Individual talk Diamond photonics for quantum sensing - Waveguides, cavities and optical antennas 19.05.2019 EPF Lausanne, Switzerland Maletinsky Patrick;
Symposium Latsis 2019 on Diamond Photonics Individual talk Diamond parabolic reflectors for efficient scanning nitrogen-vacancy magnetic imaging 19.05.2019 EPF Lausanne, Switzerland Shields Brendan;
WE-Heraeus-Seminar on Diamond Quantum Technologies Individual talk Single spin magnetic sensing of mesoscopic condensed matter systems 26.03.2019 Bad Honnef, Germany Maletinsky Patrick;
Thermal probe workshop Individual talk Nanoscale thermometry with single spins in diamond 14.03.2019 Zurich, Switzerland Maletinsky Patrick;
Hasselt Diamond Workshop - SBDD XXIV Individual talk Diamond parabolic reflectors for efficient scanning nitrogen-vacancy magnetic imaging 13.03.2019 Hasselt, Belgium Shields Brendan;
American Physical Society March Meeting Individual talk Nanoscale magnetic imaging with a scanning single spin quantum sensor 04.03.2019 Boston, United States of America Shields Brendan;
Seminar über Quanten-, Atom- und Neutronenphysik  Individual talk Nanoscale single spin magnetometry of thin-film (anti-)ferromagnets down to the monolayer limit 13.12.2018 University of Mainz, Germany Maletinsky Patrick;
25th international workshop on oxide electronics Talk given at a conference Single spin magnetic sensing of mesoscopic condensed matter systems 15.09.2018 Les Diablerets, Switzerland Maletinsky Patrick;
Delft Quantum& Nano-colloquium Individual talk Nanoscale magnetometry sing single spin quantum sensors 13.09.2018 Delft, Netherlands Maletinsky Patrick;


Associated projects

Number Title Start Funding scheme
155845 Single spin imaging of strongly correlated electron systems 01.06.2015 Temporary Backup Schemes
188521 Exploring nanoscale magnetic phenomena using a quantum microscope 01.10.2019 Project funding (Div. I-III)
143697 Quantum sensing using single spin microscopy 01.07.2013 Project funding (Div. I-III)

Abstract

Quantum sensors harness quantum phenomena, such as superposition or entanglement to yield powerful sensors for quantities such as electric and magnetic fields, strain fields or temperature. Over the last years, such quantum sensors and in particular magnetometers based on individual spins in diamond have seen remarkable progress, in part based on the successful research and technological developments by the applicant's group at the University of Basel. Todays state-of-the art quantum magnetometers, such as the ones we currently operate in Basel, offer spatial resolutions ~10 nm, magnetic field sensitivities up to 20 nT/Hz^0.5 and operate from cryogenic to ambient conditions.In this project, we will build on the outstanding performance of our existing magnetometers to address interesting and pressing questions in condensed matter and mesoscopic physics. The performance of our instruments are ideally suited to address these topics in a way impossible with other existing technologies. Our project will on one hand focus on open problems in spintronics and nano-magnetism and on the other hand address challenges in mesoscopic physics of superconductors and low-dimensional electronic systems. Our powerful new technology and the scientific insights it will generate will have far-reaching impact in physics and material sciences and will offer new views on magnetism on the nanoscale. Specifically, we will employ our magnetometers to study high-frequency dynamics in nanoscale magnetic systems. Examples include ferromagnetic resonance and spin-wave propagation that we will both study on the nanoscale. These phenomena are central to spintronics and quantum information processing and our results will thereby contribute to progress in both these fields. In a second line of experiments, we will address mesoscopic, condensed matter systems at cryogenic temperatures. A particular focus will lie on the imaging of current-distributions in superconductors and low-dimensional electronic systems, such as graphene. A broad range of open questions exist in these domains - questions that our NV magnetometers will allow us to address for the first time. We will thereby bring significant new understanding to these diverse aspects of condensed matter physics at the nanoscale. The main applicant is Prof. Dr. Patrick Maletinsky, an assistant professor and head of the Quantum-Sensing Group, which was founded at the University of Basel in 2012. He has a strong background in quantum sensing, quantum optics, mesoscopic physics and nanotechnology. He obtained his diploma in physics and his doctoral degree at ETH Zürich and performed research in some of the world-leading research laboratories such as JILA or Harvard University. Together with international collaborators including the CNRS in France, research groups in Germany, and Swiss collaborations in Zürich, Lausanne and Basel, this project will establish a coordinated, international effort to push the frontiers of our knowledge in condensed matter physics using our novel, high-performance quantum sensing technology.Here we ask for the first renewal of our initial three-year SNF project #143697, during which we have fully established our powerful magnetometers at the University of Basel and developed strong expertise in the field. This proposal builds on these initial achievements and brings NV magnetometry to a new level by demonstrating its scientific value through challenging experiments in condensed matter physics, with potentially far-reaching impact. We kindly ask the SNF to support this project with one postdoc and two PhD students who will ensure continuation of our highly successful line of experiments.
-