Project

Back to overview

Investigation of the Earth’s deep water cycle

English title Investigation of the Earth’s deep water cycle
Applicant Hermann Jörg
Number 169062
Funding scheme Project funding (Div. I-III)
Research institution Institut für Geologie Universität Bern
Institution of higher education University of Berne - BE
Main discipline Geology
Start/End 01.05.2017 - 31.12.2020
Approved amount 700'000.00
Show all

All Disciplines (3)

Discipline
Geology
Geochemistry
Mineralogy

Keywords (6)

Subduction; Diffusion; Olivine; Metamorphism; Deep water cycle; Water measurements

Lay Summary (German)

Lead
Wasser ist involviert in allen biologischen Prozessen und spielt somit eine zentrale Rolle und der Entstehung und Entwicklung des Lebens auf der Erde. Wasser im Erdinnern ist für viele geologische Prozesse entscheidend und die Entwicklung der Erde und des Lebens ist stark mit dem tiefen Wasserkreislauf verknüpft. Wasser tritt nicht nur als Flüssigkeit auf, es kann auch auf verschiedene Arten in Minerale eingebaut werden. Im Rahmen dieses Projektes wird untersucht wie Wasser durch Subduktionszonen ins Erdinnere gelangt, wie das Wasser in Minerale eingebaut wird und ob der tiefe Wasserkreislauf in über Millionen von Jahren in einem dynamischen Gleichgewicht ist.
Lay summary

Inhalt und Ziel des Forschungsprojekts

Durch die Plattentektonik werden Gesteine ins Erdinnere transportiert und dabei umgewandelt. Wasserhaltige Minerale, welche 2-10 Gewichtsprozent Wasser einbauen können, sind nur bis eine Tiefe von 50-100 km stabil. Bei der progressiven Umwandlung dieser Minerale wird daher ein wässeriges Fluid freigesetzt und neue Minerale gebildet, in welchen Wasser nur als Spurenelement vorkommt. Es ist Ziel dieses Projektes, diese Umwandlungsprozesse an Gesteinen aus den Alpen zu studieren. Insbesondere wird an natürlichen Gesteinen und Proben aus  Laborexperimenten untersucht, wie Wasser in die Minerale Olivin, Pyroxen, Granat und Rutil als Funktion von variablem Druck, Temperatur und Gesteinszusammensetzung eingebaut wird. Um diese Ziele zu erreichen, müssen neue Analysenprotokolle im Infrarotspektroskopie-Labor an der UNI Bern und an der SwissSIMS in Lausanne entwickelt werden, damit der Wassergehalt in diesen Mineralen quantifiziert werden kann.

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Unsere Arbeit wird neue Methoden entwickeln, wie Wasser in geologischen Materialien gemessen werden kann. Diese Entwicklung kann von Wissenschaftlern in der Schweiz und im Ausland für weitere Forschungsarbeiten genützt werden und steht auch für Anwendungen aus Umweltbüros und Industrie offen.

Direct link to Lay Summary Last update: 12.01.2017

Responsible applicant and co-applicants

Employees

Publications

Publication
The role of the antigorite + brucite to olivine reaction in subducted serpentinites (Zermatt, Switzerland)
Kempf Elias D., Hermann Jörg, Reusser Eric, Baumgartner Lukas P., Lanari Pierre (2020), The role of the antigorite + brucite to olivine reaction in subducted serpentinites (Zermatt, Switzerland), in Swiss Journal of Geosciences, 113(1), 16-16.
Let there be water: How hydration/dehydration reactions accompany key Earth and life processes#
Brovarone Alberto Vitale, Butch Christopher J., Ciappa Alessandra, Cleaves Henderson J., Elmaleh Agnès, Faccenda Manuele, Feineman Maureen, Hermann Jörg, Nestola Fabrizio, Cordone Angelina, Giovannelli Donato (2020), Let there be water: How hydration/dehydration reactions accompany key Earth and life processes#, in American Mineralogist, 105(8), 1152-1160.
Sustainable densification of the deep crust
Malvoisin Benjamin, Austrheim Håkon, Hetényi György, Reynes Julien, Hermann Jörg, Baumgartner Lukas P., Podladchikov Yury Y. (2020), Sustainable densification of the deep crust, in Geology, 48(7), 673-677.
A mapping approach for the investigation of Ti–OH relationships in metamorphic garnet
Reynes Julien, Lanari Pierre, Hermann Jörg (2020), A mapping approach for the investigation of Ti–OH relationships in metamorphic garnet, in Contributions to Mineralogy and Petrology, 175(5), 46.
Tracing fluid transfers in subduction zones: an integrated thermodynamic and <i>δ</i><sup>18</sup>O fractionation modelling approach
Vho Alice, Lanari Pierre, Rubatto Daniela, Hermann Jörg (2020), Tracing fluid transfers in subduction zones: an integrated thermodynamic and <i>δ</i><sup>18</sup>O fractionation modelling approach, in Solid Earth, 11(2), 307-328.
Subducting serpentinites release reduced, not oxidized, aqueous fluids
Piccoli F., Hermann J., Pettke T., Connolly J. A. D., Kempf E. D., Vieira Duarte J. F. (2019), Subducting serpentinites release reduced, not oxidized, aqueous fluids, in Scientific Reports, 9(1), 19573-19573.
Coupled inter-site reaction and diffusion: Rapid dehydrogenation of silicon vacancies in natural olivine
Jollands Michael C., Kempf Elias, Hermann Jörg, Müntener Othmar (2019), Coupled inter-site reaction and diffusion: Rapid dehydrogenation of silicon vacancies in natural olivine, in Geochimica et Cosmochimica Acta, 262, 220-242.
Assessing magmatic volatile equilibria through FTIR spectroscopy of unexposed melt inclusions and their host quartz: a new technique and application to the Mesa Falls Tuff, Yellowstone
Tollan Peter, Ellis Ben, Troch Juliana, Neukampf Julia (2019), Assessing magmatic volatile equilibria through FTIR spectroscopy of unexposed melt inclusions and their host quartz: a new technique and application to the Mesa Falls Tuff, Yellowstone, in Contributions to Mineralogy and Petrology, 174(3), 24-24.
Arc magmas oxidized by water dissociation and hydrogen incorporation in orthopyroxene
TollanPeter, HermannJörg (2019), Arc magmas oxidized by water dissociation and hydrogen incorporation in orthopyroxene, in Nature Geoscience, 12, 667-671.
The role of trace elements in controlling H incorporation in San Carlos olivine
Tollan Peter M. E., O’Neill Hugh St. C., Hermann Jörg (2018), The role of trace elements in controlling H incorporation in San Carlos olivine, in Contributions to Mineralogy and Petrology, 173(11), 89-89.
Experimental constraints on hydrogen diffusion in garnet
Reynes Julien, Jollands Michael, Hermann Jörg, Ireland Trevor (2018), Experimental constraints on hydrogen diffusion in garnet, in Contributions To Mineralogy and Petrology, 173(9), 1-20.
Hydrogen incorporation and retention in metamorphic olivine during subduction: Implications for the deep water cycle
Kempf Elias D., Hermann Jorg (2018), Hydrogen incorporation and retention in metamorphic olivine during subduction: Implications for the deep water cycle, in Geology, 46(6), 571-574.
A Subsolidus Olivine Water Solubility Equation for the Earth's Upper MantleWater Solubility Equation for Olivine
Padrón-Navarta J. A., Hermann J. (2017), A Subsolidus Olivine Water Solubility Equation for the Earth's Upper MantleWater Solubility Equation for Olivine, in Journal of Geophysical Research: Solid Earth, 122(12), 9862-9880.
The responses of the four main substitution mechanisms of H in olivine to H2O activity at 1050 °C and 3 GPa
Tollan Peter M. E., Smith Rachel, O’Neill Hugh St.C., Hermann Jörg (2017), The responses of the four main substitution mechanisms of H in olivine to H2O activity at 1050 °C and 3 GPa, in Progress in Earth and Planetary Science, 4(1), 14-14.

Collaboration

Group / person Country
Types of collaboration
Prof. H. O'Neill, RSES, Australian National University Australia (Oceania)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
University of Lausanne Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Prof. T. Ireland, RSES, Australian National University Australia (Oceania)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Prof. D. Rubatto Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
ETH Zürich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Communication with the public

Communication Title Media Place Year
Media relations: print media, online media Behind the deep water cycle Euresearcher International 2020

Awards

Title Year
Dana Medal, Mineralogical Society of America 2018

Associated projects

Number Title Start Funding scheme
163995 A new infrared spectroscopy laboratory to analyse water in geological materials 01.12.2015 R'EQUIP
178545 CSI-Alps: Geological research as a criminal investigation 01.05.2018 Agora

Abstract

Water has a profound influence on how Earth operates. The addition of small amounts of water can decrease the melting point of rocks by several hundred degrees. Water in magmas has a dramatic influence on the way magmas flow, and water-rich lavas have the potential for catastrophic eruptions whereas volcanos with water-poor lavas represent a lesser natural hazard. Water also influences many physical properties of rocks. Tiny amounts of water affect the electric conductivity and weaken mantle minerals. As a consequence, it has been suggested that plate tectonics as it operates on Earth is only possible if small amounts of water are present in the Earth’s interior. In spite of the fundamental importance of water carried deep into the Earth in controlling the evolution of our planet, there are still many open questions.This project aims to investigate some key processes in the Earth’s deep water cycle. The release of water from the Earth’s interior occurs through magmatism at mid ocean ridges and volcanic arcs. This continuous loss of water must be compensated by water transported along subduction zones back into the mantle. However, it is not clear if the deep water cycle is at steady state and the amount of water transported to the deep mantle is poorly constrained. This study investigates how water is transferred in subduction zones from hydrous minerals, which are generally stable only to about 100 km depth, to nominally anhydrous minerals that are able to carry water to the deeper mantle. We will use a wide variety of mafic and ultramafic rocks from well-characterised areas in the Alps as a natural laboratory to study this process. We aim to investigate how and how much water is incorporated during progressive dehydration reactions into olivine, garnet, pyroxene and rutile as a function of pressure, temperature and composition. These results will be compared to water incorporation in lithospheric mantle sections that were undersaturated in water. Special emphasis will be placed on investigating whether the nominally anhydrous minerals lost or gained water by diffusion during their journey back to the surface by comparing natural samples with experimental results. If water diffusion is observed, we will evaluate the potential of such diffusion profiles to obtain information on the duration of metamorphic processes at moderate temperatures. To achieve the goals of this project, protocols for water measurements in geological materials must be established for the new infrared spectroscopy laboratory in Bern and the SwissSIMS in Lausanne. These developments will serve a wider Earth Science community in Switzerland and abroad in the fields of igneous and metamorphic petrology, volcanology, ore deposits and structural geology. Funding is requested for a Post Doctoral researcher who will focus on the development of water measurement protocols, and two PhD students working on water transfer in ultramafic and mafic systems, respectively.
-