Project

Back to overview

Design and Development of Novel Solid Electrolytes for High Energy Batteries

Applicant Kundu Dipan
Number 168056
Funding scheme Ambizione
Research institution Departement Materialwissenschaft ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Material Sciences
Start/End 01.02.2017 - 31.01.2020
Approved amount 600'000.00
Show all

All Disciplines (4)

Discipline
Material Sciences
Physical Chemistry
Inorganic Chemistry
Chemical Engineering

Keywords (7)

All Solid State Batteries; Electrochemical Energy Storage; Alkali Metal Batteries; Inorganic Solid Electrolytes; Sustainable Energy Storage; Fast Ion Conductors; Polymeric Solid Electrolytes

Lay Summary (French)

Lead
Titre du projet de rechercheEtude et développement d’électrolytes solides innovants pour batteries hautes performancesLeadLe développement de batteries performantes, abordables et sécuritaires est primordial pour une utilisation efficace, stable et polyvalente des énergies renouvelables intermittentes tels que le solaire et l’éolien, qui sont nécessaire pour faire face à l’augmentation de nos besoins en énergie, à la diminution des ressources fossiles et au réchauffement climatique.
Lay summary

Contenu et objectifs du travail de recherche

De nos jours, les batteries lithium-ion sont omniprésentes, non seulement dans les smartphones et tablettes, mais également dans les voitures électriques (Tesla, Nissan Leaf, etc.). Cependant, leur utilisation à plus grande échelle est limitée par leur coût élevé et par les problèmes de sécurité dus à la présence de liquides organiques peu stables et inflammables. Ces composants organiques sont également incompatibles avec les chimies du soufre et de l’oxygène qui promettent des batteries à hautes densités d’énergie. Dans ce contexte, ce projet se concentre sur le développement et l’étude de matériaux solides innovants qui puissent remplacer les composants organiques liquides et améliorer la sécurité et la longévité des batteries hautes performances.

Dans un premier temps, deux classes de matériaux potentiellement intéressants seront synthétisées et caractérisées via des techniques innovantes. Ensuite, la faisabilité sera évaluée en couplant études théoriques et expérimentales. Enfin, les performances des candidats retenus seront évaluées en application batterie.

Contexte scientifique et social du projet de recherche

Les innovations scientifiques et technologiques de ce projet pourraient permettre le développement d’un nouveau genre de batteries plus sûres et plus performantes, à un coût réduit permettant leur application pour le domaine des transports et pour les réseaux électriques. Les motivations et buts de ce projet sont en accord avec les initiatives actuelles du gouvernement suisse sur l’énergie et l’environnement visant à la réalisation de systèmes énergétiques respectueux de l’environnement, économiquement viables, fiables et sécuritaires.

Mots-clés

stockage d’énergie, stockage d’énergies renouvelables, batteries innovantes et sécuritaires, développement de matériaux innovants.

Direct link to Lay Summary Last update: 29.08.2016

Responsible applicant and co-applicants

Employees

Publications

Publication
Unveiling Critical Insight into the Zn Metal Anode Cyclability in Mildly Acidic Aqueous Electrolytes: Implications for Aqueous Zinc Batteries
Glatz Hadrien, Tervoort Elena, Kundu Dipan (2019), Unveiling Critical Insight into the Zn Metal Anode Cyclability in Mildly Acidic Aqueous Electrolytes: Implications for Aqueous Zinc Batteries, in ACS Applied Materials & Interfaces, 12(3), 3522-3530.
A Single Li-Ion Conductor Based on Cellulose
Hänsel Christian, Lizundia Erlantz, Kundu Dipan (2019), A Single Li-Ion Conductor Based on Cellulose, in ACS Applied Energy Materials, 2(8), 5686-5691.
Development of Hierarchically Porous Ionomer Membranes for Versatile and Fast Metal Ion Conduction
Hänsel Christian, Kundu Dipan (2019), Development of Hierarchically Porous Ionomer Membranes for Versatile and Fast Metal Ion Conduction, in ACS Omega, 4(2), 2684-2692.
An Organic Cathode Based Dual-Ion Aqueous Zinc Battery Enabled by a Cellulose Membrane
Glatz Hadrien, Lizundia Erlantz, Pacifico Fiona, Kundu Dipan (2019), An Organic Cathode Based Dual-Ion Aqueous Zinc Battery Enabled by a Cellulose Membrane, in ACS Applied Energy Materials, 2(2), 1288-1294.
Oxide versus Nonoxide Cathode Materials for Aqueous Zn Batteries: An Insight into the Charge Storage Mechanism and Consequences Thereof
Oberholzer Pascal, Tervoort Elena, Bouzid Assil, Pasquarello Alfredo, Kundu Dipan (2018), Oxide versus Nonoxide Cathode Materials for Aqueous Zn Batteries: An Insight into the Charge Storage Mechanism and Consequences Thereof, in ACS Applied Materials & Interfaces, 11(1), 674-682.
Organic Cathode for Aqueous Zn-Ion Batteries: Taming a Unique Phase Evolution toward Stable Electrochemical Cycling
Kundu Dipan, Oberholzer Pascal, Glaros Christos, Bouzid Assil, Tervoort Elena, Pasquarello Alfredo, Niederberger Markus (2018), Organic Cathode for Aqueous Zn-Ion Batteries: Taming a Unique Phase Evolution toward Stable Electrochemical Cycling, in Chemistry of Materials, 30(11), 3874-3881.

Collaboration

Group / person Country
Types of collaboration
Dr. Assil Bouzid, CNRS France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
University of the Basque Country - Prof. Erlantz Lizundia Spain (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Dr. Victor Duffort, CNRS, UCCS, Lille France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Pieremanuele Canepa, National University of Singapore Singapore (Asia)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Alfredo Pasquarello/EPFL Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
2nd Swiss & Surrounding Battery Days Poster Appraisal of Sulfide Solid Electrolytes: Moving beyond breakthrough 26.08.2019 EMPA Dubendorf, Switzerland Hänsel Christian;
AiMES 2018 - ECS and SMEQ Joint International Meeting Individual talk Towards Better Aqueous Zn Batteries: Through In-Depth Understanding and Cathode Host Development 30.09.2018 Cancun, Mexico Kundu Dipan; Hänsel Christian;
AIMES - ECS and SMEQ Joint International Meeting - 2018 Talk given at a conference Development of Novel Ionomer Electrolytes for Alkali Metal Batteries 30.09.2018 Cancun, Mexico Kundu Dipan; Hänsel Christian;
European Materials Research Society (EMRS) Conference - Strasbourg Talk given at a conference A Novel Na-Ionomer for Na Metal Batteries 18.06.2018 Strasbourg, France Kundu Dipan; Hänsel Christian;
D-MATL Seminar/Organised by Student Association, Dept of Materials, ETH Zürich Individual talk Batteries for Safe and Large Scale Energy Storage 09.08.2017 ETH Zürich, Switzerland Kundu Dipan;
21st International Conference on Solid State Ionics Talk given at a conference Reversible Zn2+ intercalation for Electrochemical Energy Storage 18.06.2017 Padua, Italy Kundu Dipan;
Invited Talk at EMPA Dubendorf, Switzerland Individual talk Secondary Batteries Enabled by Reversible Zinc Intercalation 25.05.2017 EMPA/Dubendorf, Switzerland Kundu Dipan;


Abstract

Increasing energy demand, depletion of fossil fuel reserves, global warming, and climate change concern have brought the renewable energy alternatives to the forefront of global attention. In this context, energy storage devices are particularly important as they can play a critical role toward versatile, stable, and efficient utilization of intermittent renewable resources. Among various energy storage technologies, electrochemical energy storage (EES), specifically based on batteries has garnered tremendous interest in recent times by powering portable electronics and enabling vehicle electrification. They also seem a natural fit for small to medium scale storage applications due to their high round trip energy efficiency, long cycle life, pollution free operation, variable power and energy characteristics, and low maintenance costs. However, modern batteries are still limited by serious fundamental and technical challenges and none of them satisfy all of the major performance matrices like cost/kilowatt hour, specific energy (Wh/kg), specific power (kW/kg), safety, and cycle life. Alkali metal batteries (AMBs) present exciting opportunities to push the energy limits and versatility of battery devices further by replacing graphitic/carbon anode, commonly used in commercial lithium ion batteries, with alkali metal. Alkali metals are the ultimate negative electrodes due to their high specific capacities and low electrochemical potential. Moreover, alkali metals are the only choice to complement oxygen or sulfur in high energy chemistries like Li-S , and Li-O2 or Na-O2 batteries. Yet, uncontrolled dendritic growth at the alkali metal electrode during electrochemical stripping/deposition, and their incompatibility with the available liquid organic electrolytes pose crucial challenges in the effort to develop safe and high performance systems. The organic electrolytes are also prone to oxidation at high voltage and therefor forbid the utilization of high voltage cathodes. Clearly, to tap into the promise high energy safe batteries it is imperative to substitute organic electrolytes with fast ion conducting solid electrolytes possessing superior electrochemical and mechanical stability. In this context, this proposal seeks to develop high performance single Li+/Na+ conducting polymeric and inorganic solid electrolytes that can enable safe and stable operation of alkali metal anode, and high energy density materials like sulfur, oxygen, and high voltage intercalation materials at the cathode in all solid state batteries (ASSBs). The applicant would focus on designing (a) polymer/polymer-nanocomposite electrolyte based on sulfonated polyether ether ketone with unity Li+/Na+ transference number and high ionic conductivity, (b) solid state Li+ and Na+ conductors based on selenium analogues of Li/Na - Argyrodite of general formula A6PSe5X (A: Na, Li; X: Br, I) to enable the development of higher energy safe and stable AMBs/ASSBs. Furthermore, the polymeric and solid electrolytes may also function as the protective membrane to stabilize Li (or Na) anodes in typical liquid electrolyte cells and increase their energy density by ~3 fold compared to the cell using graphite anodes. Such protective membranes would be also crucial for the stable operation of high capacity Li-S and metal-O2 batteries using organic liquid electrolytes. Moving beyond conventional liquid-electrolyte lithium-ion batteries is a sensible next step that offers sustainability and cost-effectiveness. This requires an evaluation in the science underpinning potential devices, including the discovery of new materials, their electrochemistry and an increased understanding of ion mobility and interfacial stability. This is the overarching subject of this proposal.
-