Projekt

Zurück zur Übersicht

FELICITY (ERC-2014-StG)

Titel Englisch Foundations of Efficient Lattice Cryptography
Gesuchsteller/in Lyubashevsky Vadim
Nummer 166734
Förderungsinstrument Programme
Forschungseinrichtung IBM Research GmbH
Hochschule Firmen/Privatwirtschaft - FP
Hauptdisziplin Informatik
Beginn/Ende 01.01.2016 - 31.12.2020
Bewilligter Betrag 1'146'964.00
Alle Daten anzeigen

Keywords (4)

computer security; quantum-resistant cryptography; lattice-based cryptography; cryptography

Lay Summary (Französisch)

Lead
La cryptographie à clé publique représente la base de la sécurité sur Internet. Pourtant il est très probable que dans une, voire deux décennies, une entité gouvernementale ou privée parvienne à créer un ordinateur quantique universel et capable de compromettre la sécurité de tous les protocoles à clé publique utilisés à ce jour. La cryptographie à base de réseaux Euclidiens, qui semble résister aux attaques quantiques, est actuellement considérée comme la voie la plus prometteuse pour prendre la relève, et devenir ainsi la future base de la cryptographie. Les récentes découvertes ont également démontré que cette approche peut même s’appliquer à des constructions avec de nouvelles fonctionnalités. Cependant, bien que le progrès dans ce domaine ait été considérable, les différents schémas en résultant restent à ce jour extrêmement limités dans leur utilité en pratique. En effet, leur taille de clés ainsi que leur rendement sont souvent bien trop grands.
Lay summary

Contenu et objectifs du travail de recherche

 L’objectif principal de ce projet est de développer significativement les connaissances actuelles en matière de cryptographie à base de réseaux Euclidiens.  La méthodologie que nous proposons diffère des autres travaux de recherche réalisés à ce jour. Au lieu de se concentrer directement sur des constructions avancées et de négliger leurs applications pratiques; le projet s’attaquera aux obstacles fondamentaux qui compromettent ces applications pratiques. A cette fin, ce projet va se concentrer sur la construction de schémas se positionnant aux frontières de l’efficacité; car c'est là que les barrières sont les plus apparentes.

Notre travail s’articulera suivant deux axes : 

  1. Identifier les nouveaux problèmes de réseaux Euclidiens qui pourraient servir de base à des constructions cryptographiques plus efficaces.
  2. Créer, implémenter, et standardiser des alternatives hautement efficaces aux protocoles cryptographiques les plus cruciaux en matière de sécurisation de la communication sur internet; et ce en s’appuyant sur les réseaux euclidiens.

 

Contexte scientifique et social du projet de recherche

En menant ce projet à son terme, nous espérons arriver à ouvrir la voie vers la construction de schémas cryptographiques sécurisés contre les attaques quantiques. 

Direktlink auf Lay Summary Letzte Aktualisierung: 15.12.2015

Verantw. Gesuchsteller/in und weitere Gesuchstellende

Mitarbeitende

Publikationen

Publikation
A Concrete Treatment of Fiat-Shamir Signatures in the Quantum Random-Oracle Model
Kiltz Eike, Lyubashevsky Vadim, Schaffner Christian (2017), A Concrete Treatment of Fiat-Shamir Signatures in the Quantum Random-Oracle Model, in Eurocrypt.
A Parallel Variant of LDSieve for the {SVP} on Lattices
Mariano Artur, Laarhoven Thijs, Bischof Christian H. (2017), A Parallel Variant of LDSieve for the {SVP} on Lattices, in 25th Euromicro International Conference on Parallel, Distributed and Network-based Processing, {PDP}, 23-30.
Amortization with Fewer Equations for Proving Knowledge of Small Secrets
del Pino Rafaël, Lyubashevsky Vadim (2017), Amortization with Fewer Equations for Proving Knowledge of Small Secrets, in Advances in Cryptology - {CRYPTO} 2017 - 37th Annual International Cryptology Conference, Santa Barb, 365-394.
CRYSTALS - Dilithium: Digital Signatures from Module Lattices
Ducas Léo, Kiltz Eike, Lepoint Tancrède, Lyubashevsky Vadim, Schwabe Peter, Seiler Gregor, Stehlé Damien (2017), CRYSTALS - Dilithium: Digital Signatures from Module Lattices, in {IACR} Cryptology ePrint Archive, 2018, 633-633.
CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM
Bos Joppe W., Ducas Léo, Kiltz Eike, Lepoint Tancrède, Lyubashevsky Vadim, Schanck John M., Schwabe Peter, Seiler Gregor, Stehle Damien (2017), CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM, in {IACR} Cryptology ePrint Archive, 2018, 634.
One-Shot Verifiable Encryption from Lattices
Lyubashevsky Vadim, Neven Gregory (2017), One-Shot Verifiable Encryption from Lattices, in Advances in Cryptology - {EUROCRYPT} 2017 - 36th Annual International Conference on the Theory and A, 293-323.
Optimal Hashing-based Time-Space Trade-offs for Approximate Near Neighbors
Andoni Alexandr, Laarhoven Thijs, Razenshteyn Ilya P., Waingarten Erik (2017), Optimal Hashing-based Time-Space Trade-offs for Approximate Near Neighbors, in Proceedings of the Twenty-Eighth Annual {ACM-SIAM} Symposium on Discrete Algorithms, {SODA} 2017, Ba, 47-66.
Partially Splitting Rings for Faster Lattice-Based Zero-Knowledge Proofs
Lyubashevsky Vadim, Seiler Gregor (2017), Partially Splitting Rings for Faster Lattice-Based Zero-Knowledge Proofs, in {IACR} Cryptology ePrint Archive, 2018, 523-523.
Practical Quantum-Safe Voting from Lattices
del Pino Rafaël, Lyubashevsky Vadim, Neven Gregory, Seiler Gregor (2017), Practical Quantum-Safe Voting from Lattices, in Proceedings of the 2017 {ACM} {SIGSAC} Conference on Computer and Communications Security, {CCS} 201, 1565-1581.
Digital Signatures Based on the Hardness of Ideal Lattice Problems in All Rings
Lyubashevsky Vadim (2016), Digital Signatures Based on the Hardness of Ideal Lattice Problems in All Rings, in Advances in Cryptology - {ASIACRYPT} 2016 - 22nd International Conference on the Theory and Applicat, 196-214.
The Whole is Less Than the Sum of Its Parts: Constructing More Efficient Lattice-Based AKEs
del Pino Rafaël, Lyubashevsky Vadim, Pointcheval David (2016), The Whole is Less Than the Sum of Its Parts: Constructing More Efficient Lattice-Based AKEs, in Security and Cryptography for Networks - 10th International Conference, {SCN} 2016, Amalfi, Italy, A, 273-291.

Abstract

Public key cryptography is the backbone of internet security. Yet it is very likely that within the next fewdecades some government or corporate entity will succeed in building a general-purpose quantum computer that is capable of breaking all of today’s public key protocols. Lattice cryptography, which appears to be resilient to quantum attacks, is currently viewed as the most promising candidate to take over as the basis for cryptography in the future. Recent theoretical breakthroughs have additionally shown that lattice cryptography may even allow for constructions of primitives with novel capabilities. But even though the progress in this latter area has been considerable, the resulting schemes are still extremely impractical.The central objective of the FELICITY project is to substantially expand the boundaries of efficient lattice-based cryptography. This includes improving on the most crucial cryptographic protocols, some of which are already considered practical, as well as pushing towards efficiency in areas that currently seem out of reach. The methodology that we propose to use differs from the bulk of the research being done today. Rather than directly working on advanced primitives in which practical considerations are ignored, the focus of the project will be on finding novel ways in which to break the most fundamental barriers that are standing in the way of practicality. For this, I believe it is productive to concentrate on building schemes that stand at the frontier of what is considered efficient - because it is there that the most critical barriers are most apparent. And since cryptographic techniques usually propagate themselves from simple to advanced primitives, improved solutions for the fundamental ones will eventually serve as building blocks for practical constructions of schemes having advanced capabilities.
-