Project

Back to overview

The genetic and cellular basis of olfactory pathway emergence

English title The genetic and cellular basis of olfactory pathway emergence
Applicant Benton Richard
Number 166646
Funding scheme Project funding (Div. I-III)
Research institution Center for Integrative Genomics (CIG) Faculté de biologie et de médecine Université de Lausanne
Institution of higher education University of Lausanne - LA
Main discipline Molecular Biology
Start/End 01.08.2016 - 31.07.2019
Approved amount 834'000.00
Show all

All Disciplines (4)

Discipline
Molecular Biology
Genetics
Cellular Biology, Cytology
Neurophysiology and Brain Research

Keywords (8)

neuron; signalling; Drosophila; evolution; apoptosis; olfaction; circuit; receptor

Lay Summary (French)

Lead
Au cours de l’évolution, les systèmes olfactifs des animaux doivent s’adapter aux changements des conditions environnementales, par exemple, pour détecter des nouvelles sources de nourriture et pour éviter des nouveaux prédateurs. La base génétique de la formation des nouveaux circuits olfactifs est mal comprise. Ce projet apporte sa contribution à ce problème fondamental de la neuroscience et de la biologie de l’évolution.
Lay summary

Contenu et objectifs du travail de recherche

Nous utiliserons la mouche du vinaigre (la drosophile) – un modèle génétique très puissant – pour investiguer les mécanismes moléculaires et cellulaires de la formation et diversification des circuits olfactifs. Il y a deux sous-projets :

Projet 1. La drosophile possède deux « nez » qui montrent des différences profondes dans leurs morphologies, les odeurs qu’ils reconnaissaient, et leurs projections neuronales au cerveau. Nous avons identifié environ 300 gènes qui sont exprimés spécifiquement dans l’un ou l’autre de ces nez, et proposons de faire un crible génétiques afin de déterminer leur contributions spécifiques au développement ou à la fonction de ces deux nez.

Projet 2. Pendant le développement du système olfactif de la drosophile, une fraction importante de cellules meurt de mort programmée. Nous testerons l’hypothèse que l’inhibition de la mort de ces cellules leur permette de former des nouveaux circuits olfactifs.

Contexte scientifique et social du projet de recherche

Cette recherche fondamentale permettra à la fois d'identifier de nouvelles molécules impliquées dans la diversification de la structure et de la fonction des systèmes olfactifs, et de déterminer la contribution potentielle des neurones normalement condamnés à mourir aux nouveaux circuits. Les résultats seront pertinents à notre appréciation de l’évolution des circuits neuronaux de tous les animaux.

Direct link to Lay Summary Last update: 28.04.2016

Responsible applicant and co-applicants

Employees

Publications

Publication
Sensory neuron lineage mapping and manipulation in the Drosophila olfactory system
Chai Phing Chian, Cruchet Steeve, Wigger Leonore, Benton Richard (2019), Sensory neuron lineage mapping and manipulation in the Drosophila olfactory system, in Nature Communications, 10(1), 643-643.
Molecular evolution of juvenile hormone esterase-like proteins in a socially exchanged fluid
LeBoeuf Adria C., Cohanim Amir B., Stoffel Céline, Brent Colin S., Waridel Patrice, Privman Eyal, Keller Laurent, Benton Richard (2018), Molecular evolution of juvenile hormone esterase-like proteins in a socially exchanged fluid, in Scientific Reports, 8(1), 17830-17830.
Open questions: Tackling Darwin’s “instincts”: the genetic basis of behavioral evolution
Arguello J. Roman, Benton Richard (2017), Open questions: Tackling Darwin’s “instincts”: the genetic basis of behavioral evolution, in BMC Biology, 15(1), 26-26.
Multisensory neural integration of chemical and mechanical signals
Sánchez-Alcañiz Juan Antonio, Benton Richard (2017), Multisensory neural integration of chemical and mechanical signals, in BioEssays, 39(8), 1700060-1700060.

Scientific events



Self-organised

Title Date Place

Awards

Title Year
FENS EJN Young Investigator Prize 2018
L’Oreal-UNESCO for Women in Science Fellowship 2018
EMBO Gold Medal 2016

Associated projects

Number Title Start Funding scheme
185377 Transcriptomic and genetic analysis of olfactory sensory neuron differentiation and death 01.08.2019 Project funding (Div. I-III)
140869 Molecular and neural mechanisms of intra- and interspecific communication 01.04.2012 Project funding (Div. I-III)
185377 Transcriptomic and genetic analysis of olfactory sensory neuron differentiation and death 01.08.2019 Project funding (Div. I-III)

Abstract

Over evolutionary timescales, animal olfactory systems must adapt to ever-changing environmental conditions to favour a species’ survival. This long-term process is apparent in the existence of several structurally and functionally distinct olfactory subsystems that are composed of dozens to hundreds of discrete populations of olfactory sensory neurons (OSNs). Each of these neural populations is defined by the olfactory receptor(s) it expresses and the glomerulus it innervates in the brain, linking detection of specific odors in the external world to adaptive internal perceptions and behavioral responses. Comparison across species reveals enormous diversity in the number, organisation and function of olfactory sensory pathways, even within phyla, suggesting that evolutionary innovations in animal olfactory systems have relatively simple genetic underpinnings. However, the molecular and cellular basis of this process is very poorly understood.The proposed research addresses this fundamental problem in Drosophila melanogaster, whose olfactory circuits are organised with a similar logic to those of mammals but which are less numerous and experimentally more tractable. There are two conceptually distinct aims. In Aim 1, we will mine a comparative transcriptomics dataset of the Drosophila olfactory subsystems - which are defined by their expression of either Odorant Receptor (OR) or Ionotropic Receptor (IR) gene families - through histological and functional screens to identify novel molecules that contribute to the different developmental, morphological, neuroanatomical and physiological properties of these subsystems. In Aim 2, we will investigate how manipulations of patterns of developmental programmed cell death (which is prevalent in OSN lineages in Drosophila) is sufficient to produce “new” populations of neurons capable of responding to odors and forming novel functional circuits in the brain.Together, these studies will both identify new molecules involved in olfactory subsystem structure, function and evolution, and determine the extent to which the formation of novel olfactory pathways lies latent in cells normally fated to die. These insights are likely to be of general relevance for understanding evolutionary adaptations of many regions of the nervous system in Drosophila and other animals.
-