Project

Back to overview

Multi-dimensional imaging to visualize starch biosynthesis in plants.

English title Multi-dimensional imaging to visualize starch biosynthesis in plants.
Applicant Zeeman Samuel C.
Number 166487
Funding scheme Interdisciplinary projects
Research institution Departement Umweltsystemwissenschaften ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Molecular Biology
Start/End 01.07.2016 - 31.03.2020
Approved amount 449'640.00
Show all

All Disciplines (2)

Discipline
Molecular Biology
Geochemistry

Keywords (6)

starch; NanoSIMS; stable isotope labelling; correlative microscopy; amylose and amylopectin; Arabidopsis thaliana

Lay Summary (German)

Lead
Von Pflanzen produzierte Kohlenhydrate (Zucker und Stärke) bilden aufgrund ihres Nährwertes und ihrer Verwendung als industrieller Rohstoff eine bedeutende Grundlage unserer Gesellschaft. Dieses Projekt widmet sich den zellbiologischen Aspekten der Stärkeherstellung. Mithilfe aktueller molekularbiologischer Methoden, Isotopenmarkierung und Mikroskopie untersuchen wir, wie stärkesynthetisierende Enzyme in der Modellpflanze Arabidopsis thaliana die Produktion von wasserunlöslichen Stärkekörnern in Gang setzen und ihr Wachstum kontrollieren.
Lay summary

Von Pflanzen produzierte Kohlenhydrate wie Zucker und Stärke bilden eine bedeutende Grundlage für unsere Gesellschaft: Sie besitzen nicht nur einen hohen Nährwert, sondern sind auch wichtige Rohstoffe für die Industrie und die Produktion von Biokraftstoffen, welche wahrscheinlich auch in Zukunft einen Teil unserer erneuerbaren Energien ausmachen werden.  Das Ziel der hier vorgeschlagenen Forschung ist es, zu verstehen, wie Pflanzen ihr wichtigstes Speicherkohlenhydrat – Stärke – herstellen.

Stärke besteht aus Glukose (Traubenzucker), die sich zu linearen und verzweigten Ketten verbindet, welche dann wiederum semikristalline, wasserunlösliche Stärkekörner ausbilden. Obwohl Stärke uns allen bekannt ist, verstehen wir noch nicht vollständig, wie sie von Pflanzen gebildet wird. Wir wissen, dass Pflanzen zahlreiche spezielle Proteine (Enzyme) besitzen, die die Zuckerpolymere synthetisieren. Diese scheinen aber interessanterweise an bestimmte Orte in der Zelle gebunden zu sein, wodurch sie eine genaue Anzahl von Stärkekörnern mit bestimmten Formen und Grössen produzieren können. Mithilfe aktueller molekularbiologischer Methoden, Isotopenmarkierung und Mikroskopie untersuchen wir nun diese zellbiologischen Aspekte der Stärkeherstellung in der Modellpflanze Arabidopsis thaliana. Beispielsweise wollen wir die beteiligten Enzyme in hoher Auflösung orten und die Bildung von Stärke in Echtzeit beobachten. Die gewonnenen Erkenntisse könnten dann dazu beitragen, verbesserte stärkeliefernde Pflanzen (wie Kartoffeln oder Getreide) herzustellen, entweder durch Züchtung oder durch biotechnologische Methoden.

Direct link to Lay Summary Last update: 03.01.2017

Lay Summary (English)

Lead
Society relies on the carbohydrates (sugars and starches) produced by plants. In addition to their nutritive value, plant carbohydrates serve as raw materials for industry. This project focusses on the cell-biological aspects of starch production. We use modern molecular biological, isotopic labelling and microscopic techniques to study how starch biosynthetic enzymes in the model plant Arabidopsis thaliana initiate the production of insoluble starch granules and control the way they grow.
Lay summary

Society relies on the carbohydrates (sugars and starches) produced and stored by plants. In addition to their nutritive value, extracted carbohydrates serve as raw materials in industry and to produce biofuels, which is likely to remain a component of our sources of renewable energy. The work proposed here aims to understand the biosynthetic machinery that plants use to produce starch - their major storage carbohydrate.

Starch is composed of the simple sugar glucose which is polymerised into linear and branched chains. These polymers assemble as massive, semi-crystalline, insoluble granules. Although starch is a very familiar substance to us all, we still do not fully understand how plants make it. We know that a defined set of enzymes make the starch polymers, but somehow their activities are localised to specific places in the cell and controlled to produce a specific number of starch granules with defined sizes and shapes. We are using molecular-biological, isotopic labelling and microscopic techniques to analyse these cell-biological aspects of starch production in the model plant Arabidopsis thaliana. For example, we would like to be able to localise the enzymes with ultrastructural resolution as well as visualise the production of starch in vivo, as it happens. This valuable knowledge could be used to improve the quality of our starch crops (e.g. potato or cereals), either through breeding or via biotechnological methods.

Direct link to Lay Summary Last update: 03.01.2017

Responsible applicant and co-applicants

Employees

Publications

Publication
STARCH SYNTHASE5, a Noncanonical Starch Synthase-Like Protein, Promotes Starch Granule Initiation in Arabidopsis
Abt Melanie R., Pfister Barbara, Sharma Mayank, Eicke Simona, Bürgy Léo, Neale Isabel, Seung David, Zeeman Samuel C. (2020), STARCH SYNTHASE5, a Noncanonical Starch Synthase-Like Protein, Promotes Starch Granule Initiation in Arabidopsis, in The Plant Cell, 32(8), 2543-2565.
Evolutionary innovations in starch metabolism
Abt Melanie R, Zeeman Samuel C (2020), Evolutionary innovations in starch metabolism, in Current Opinion in Plant Biology, 55, 109-117.

Collaboration

Group / person Country
Types of collaboration
Prof. F. Kessler, Univ. Neuchatel Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. G. Finazzi, CEA Grenoble France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
EPNOE 2019 - 6th EPNOE International Polysaccharides Conference Talk given at a conference Plenary: A fresh look at starch biosynthesis using new synthetic- and cell-biological approaches 21.10.2019 Aveiro, Portugal Zeeman Samuel C.;
Invited lecture at the University of Sellenbosch Individual talk A fresh look at starch biosynthesis using new synthetic- and cell-biological approaches 12.09.2019 Stellenbosch, South Africa Zeeman Samuel C.;
Acclimation & Chloroplast Biology: from Genes to Systems Talk given at a conference Penary: Taking a fresh look at starch biosynthesis. 08.08.2019 Irsee, Germany Zeeman Samuel C.;
89th IUVSTA WORKSHOP: 89th IUVSTA WORKSHOP: Biological and soft matter sample preparation for high resolution imaging by high vacuum techniques Talk given at a conference Multidimensional imaging reveals fusion and anisotropic growth of semi-crystalline starch granules 19.05.2019 Zakopane, Poland Bürgy Léo Arthur;
Zurich-Basel Plant Science Centre Symposium: Breakthroughs in Plant Sciences Poster Beyond catalysis: the role of starch synthase 5 in the biogenesis of starch granules 05.12.2018 Zurich, Switzerland Abt Melanie Ruth;
Invited talk at the John Innes Centre Individual talk A fresh look at starch biosynthesis using new synthetic- and cell-biological approaches 06.09.2018 Norwich, Great Britain and Northern Ireland Zeeman Samuel C.;
Invited Talk and the University of Cambridge, UK Individual talk Protein targeting within the chloroplast… A cell-biological view of starch biosynthesis. 08.03.2018 Cambridge, Great Britain and Northern Ireland Zeeman Samuel C.;
Zurich-Basel Plant Science Centre Symposium: Dynamics of Plant Development and Evolution Poster Protein networking: novel actors in starch metabolism 30.11.2017 Zurich, Switzerland Abt Melanie Ruth;
Zurich-Basel Plant Science Centre Symposium: Dynamics of Plant Development and Evolution Poster The hidden dynamic of starch granules in Arabidopsis leaves 30.11.2017 Zurich, Switzerland Bürgy Léo Arthur;
The Starch Round Table Talk given at a conference Plenary: Giving starch a new look... Taking the granule apart and putting it back together again. 05.10.2017 San Diego, United States of America Zeeman Samuel C.;
Fourth International Conference on Plant Metabolism (ICPM2017) - Chinese Academy of Sciences Talk given at a conference Keynote: Protein Targeting to STarch: A new class of proteins that bring enzymes and substrates together 16.07.2017 Dalian, China Zeeman Samuel C.;
Chloroplast Metabolism and Photosynthesis Symposium Poster Novel proteins invlved in starch metabolism 26.06.2017 Neuchatel, Switzerland Abt Melanie Ruth;
Invited talk at CEA Grenoble Individual talk New insights into starch metabolism from the analysis of non-enzymatic, starch binding proteins and from heterologous reconstruction of the biosynthetic pathway in yeast. 02.03.2017 Grenoble, Austria Zeeman Samuel C.;
European Starch Round Table Talk given at a conference Plenary: New insights into starch metabolism from the analysis of non-enzymatic, starch binding proteins and from heterologous reconstruction of the biosynthetic pathway in yeast 17.11.2016 Lille, France Zeeman Samuel C.;


Self-organised

Title Date Place
Chloroplast Metabolism and Photosynthesis Symposium 26.06.2017 Neuchatel, Switzerland

Communication with the public

Communication Title Media Place Year
Talks/events/exhibitions Scientifica 2017 - Kraftwerk Pflanze: Biomasse gibt Vollgas German-speaking Switzerland 2017

Awards

Title Year
Poster prize 2017

Associated projects

Number Title Start Funding scheme
182570 Understanding the Cell Biology of Starch Metabolism in Plants 01.02.2019 Project funding (Div. I-III)
153144 Understanding the Mechanism of Starch Biosynthesis in Plants 01.04.2014 Project funding (Div. I-III)

Abstract

The aim of the work described in this proposal is to apply multiple, cutting-edge imaging technologies to visualize in unparalleled detail the active deposition of starch in plants. This is critical both from a basic science perspective and for the long-term goal of improving crop plants in terms of yield and quality. Central to the proposal is the application of a tool developed primarily for geochemistry - Nanometre-scale Secondary Ion Mass Spectrometry (NanoSIMS) - the area of expertise of the collaborating Meibom laboratory. We will apply this high-end instrument on starch synthesising plant materials that have been previously labelled with stable isotopes, primarily 13C supplied as 13CO2. Newly assimilated carbon deposited in starch can be simultaneously visualised and quantified via NanoSIMS in fixed material with exquisite resolution. This material can also be imaged by other methods and the results correlated. We have already shown that deposition onto starch granules is non-uniform and will use molecular genetics to reveal the mechanism orchestrating and targeting the biosynthetic apparatus. Our laboratory is renowned for its work on starch metabolism and has an extensive collection of Arabidopsis thaliana lines defective in starch biosynthetic genes. Furthermore, we have pioneered the application of serial block-face scanning electron microscopy (i.e. 3View and FIB-SEM) and 3-dimensional reconstruction of plant cell ultrastructure. Here, we will combine confocal laser scanning microscopy to visualise fluorescently tagged proteins, 3View imaging to provide an ultrastructural context on which to overlay fluorescent signals, and NanoSIMS to correlate these patterns of protein localisation with actual starch biosynthesis.Via this interdisciplinary approach, our experiments will break new ground by revealing at the nanometre-scale the patterns and dynamics of starch biosynthesis. This will enabling us to address previously intractable questions. Preliminary work, described herein, demonstrate the feasibility of the proposal and its potential. When combined with the wealth of genetic and molecular resources that have been previously developed by our laboratory, other laboratories, or that will be generated in parallel, we are confident we will make major advances in the understanding of this vitally important process. In addition to the advances we envisage in the field of starch metabolism, this work will serve to demonstrate the power of multi-dimensional imaging in life science research and how centralised infrastructure such as the NanoSIMS can be effectively used to support diverse life science research programs.
-