Project

Back to overview

MOisture Transport pathways and Isotopologues in water Vapour (MOTIV)

English title MOisture Transport pathways and Isotopologues in water Vapour (MOTIV)
Applicant Wernli Heini
Number 164721
Funding scheme Project funding (Div. I-III)
Research institution Institut für Atmosphäre und Klima ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Climatology. Atmospherical Chemistry, Aeronomy
Start/End 01.01.2017 - 31.12.2020
Approved amount 175'207.00
Show all

Keywords (5)

Meteorology; Climatology; Numerical weather prediction; Atmospheric water cycle; Stable water isotopes

Lay Summary (German)

Lead
Das wissenschaftliche Verständnis des atmosphärischen Wasserkreislaufs (Verdunstung, Transport, Wolkenbildung und Niederschlag) ist weiterhin unvollständig. Zudem sind die involvierten Prozesse in numerischen Wetter und Klimamodellen nur näherungsweise abgebildet. Eine Kombination aus Messungen mit Fernerkundungsverfahren und der numerischen Modellierung stabiler Wasserisotope soll in diesem Projekt helfen, um die Rolle dieser Prozesse besser zu verstehen und zu quantifizieren.
Lay summary

Inhalt und Ziel des Forschungsprojekts

Unser übergeordnetes Ziel ist es, zu einem verbesserten Verständnis des atmosphärischen Wasserkreislaufs in verschiedenen Regionen der Erde (Mitteleuropa, subtropischer Nordatlantik, afrikanische Monsunregion) beizutragen. Wir werden Simulationen zum Transport von Wasserdampf in der Atmosphäre und zum Gehalt stabiler Wasserisotope im Wasserdampf in den drei genannten Regionen durchführen ­– mit speziellen, von uns entwickelten Versionen des COSMO Wettervorhersagemodells. Die Auswertung dieser Simulationen, in Kombination mit einzigartigen Messungen stabiler Wasserisotope von Kollegen am KIT in Karlsruhe, wird dazu dienen, besser zu verstehen, wie Wasser in der Atmosphäre grossräumig transportiert und kleinräumig, z.B. durch Turbulenz in der Grenzschicht oder durch konvektive Prozesse vermischt wird.

 

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Unsere Arbeit wird neue Informationen liefern zu den physikalischen Prozessen, die für den globalen atmosphärischen Wasserhaushalts essentiell sind. Der Fokus des Projekts liegt sowohl auf Mitteleuropa wie auch auf Klimaregionen in den Subtropen und in Afrika, in denen in den kommenden Jahrzehnten besonders starke Auswirkungen des Klimawandels zu erwarten sind.

Direct link to Lay Summary Last update: 16.09.2016

Responsible applicant and co-applicants

Employees

Name Institute

Publications

Publication
The Climatological Impacts of Continental Surface Evaporation, Rainout, and Subcloud Processes on δ D of Water Vapor and Precipitation in Europe
Christner Emanuel, Aemisegger Franziska, Pfahl Stephan, Werner Martin, Cauquoin Alexandre, Schneider Matthias, Hase Frank, Barthlott Sabine, Schädler Gerd (2018), The Climatological Impacts of Continental Surface Evaporation, Rainout, and Subcloud Processes on δ D of Water Vapor and Precipitation in Europe, in Journal of Geophysical Research: Atmospheres, 123(8), 4390-4409.

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
EGU Conference Poster Tropospheric moisture transport pathways and stable water isotopes over the eastern subtropical North Atlantic 13.04.2018 Wien, Austria Dahinden Fabienne;


Associated projects

Number Title Start Funding scheme
185049 Understanding the influence of warm conveyor belts in extratropical cyclones on tropopause dynamics: analysis with observations, reanalyses and global climate simulations 01.01.2020 Project funding (Div. I-III)
177996 Lagrangian analysis of ice cloud formation pathways and their isotopic signals in high-resolution COSMO-iso simulations of the African and Asian monsoon 01.07.2018 PIRE

Abstract

This project will use observations and numerical simulations of atmospheric water vapourisotopologues to increase the process understanding of the coupling between atmosphericwater and circulation in different climatic regions. Novel observational data are essential forfurther improving numerical weather and climate models and to this end water vapourisotopologues can make a unique contribution. Their ratios provide information about thesource conditions of atmospheric water and the involved transformation processes, in particularin clouds. There has recently been large progress in modelling and observing these ratios,such that a combined analysis is now feasible at high resolution and on a global scale.The aim of this project is to establish tropospheric water vapour isotopologues as an observational tool for testing the model representation of atmospheric moisture pathways, thereby contributing to key challenges in present-day climate research. To achieve statistical robustness, we will generate an unprecedented amount of free tropospheric {H2O, dD}-pairs (dD is the standardised ratio between HD16O and H216O). For the first time a validated observational dataset will be available that covers large areas and long time periods. At the same time, a high-resolution meteorological model with isotopologue representation will be used for analysing moisture sources and pathways and their associated isotopologue signals. This combined observational-modeling approach will provide unique opportunities for modelevaluation and for advancing the understanding of the involved processes. The potential of the isotopologues will be demonstrated in three different climatologically interesting regions. In Europe our approach will provide valuable insight into the key relationship between moisture sources and isotopologue signals in highly variable weather conditions. Over the subtropical North Atlantic the isotopologues will be used for tracing mixing between the marine boundary layer and the free troposphere, whose discrepant treatment in models is thought to be one important reason for a large cloud feedback uncertainty in climate models. Over West Africa the isotopologues serve to evaluate the model representation of the West African monsoon, particularly the associated horizontal moisture transport, terrestrial moisture recycling and the diurnal variations related to vertical mixing. Of particular interest will be the role of organised convection in influencing the monsoon circulation and the associated water pathways. Together these results will help to identify and better understand deficits in existing weather and climate models and provide a new framework to guide future model improvement.
-