Project

Back to overview

Ultrasound guided motion mitigation of proton therapy in the lung

English title Ultrasound guided motion mitigation of proton therapy in the lung
Applicant Weber Damien Charles
Number 163330
Funding scheme Project funding (Div. I-III)
Research institution Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Clinical Cancer Research
Start/End 01.10.2016 - 31.03.2020
Approved amount 474'000.00
Show all

All Disciplines (2)

Discipline
Clinical Cancer Research
Other disciplines of Physics

Keywords (3)

Lung cancer; Proton therapy; Image guided radiotherapy

Lay Summary (German)

Lead
Ultrasound and optical surface guided proton therapy for lung tumours
Lay summary

Der Vorteil der Protonen Therapie besteht darin, dass das gesunde  Gewebe nur minimal bestrahlt wird. Dies könnte wichtig sein für die Behandlung von Lungentumoren. Aufgrund der Anatomie des Patienten, stellt dies erhebliche Herausforderungen an präzise Behandlungen in diesem Bereich. Deshalb ist es notwendig die Lungen-Bewegungen aufzuzeichnen. Eine erfolgreiche Ueberwachung der Bewegung, benötigt präzise Methoden, um die kontinuierliche Feststellung der Tumorposition während der ganzen Behandlungsdauer zu gewährleisten. So bieten die Bilder von Ultraschall (US) und der optischen Oberfläche (OS)  interessante Möglichkeiten. Leider kann keine dieser Möglichkeiten zur Bildgebung von Lungentumoren direkt eingesetzt werden. Jedoch kann der US dafür eingesetzt werden um Echtzeitbildstrukturen im oberen Bauchraum zu erhalten, und die OS-Bildgebung kann Brust und Bauchwandbewegungen festhalten. Jeder Lösungsansatz könnte deshalb als Indikator für Tumorbewegungen verwendet werden, wenn auch nur indirekt.

Es ist das Ziel dieses Projektes, Methoden zu entwicklen, durch welche Voraussagen von dreidimensionalen Bewegungen der Lunge mit Ultraschall/optischer Bildgebung im oberen Bauchraum gemacht werden können. Um eine hohe Präzision zu erreichen, schlagen wir vor, dass Ultraschall zur Ueberwachung von Zwerchfell/Leber und die optische Bildgebung zu den genauen Patientenmodellen der Bewegungen der Lunge eingesetzt wird. Die Präzision der entwickelten Modelle wird überprüft werden durch die Anwendung von menschenähnlichen 4D Phantomen und durch umfassende Simulationen von Protonenbehandlungen, welche auf vorgängig entwickelten Annäherungen von 4D Bildgebung und Berechnngssimulationen basiert. Sollte sich diese Annäherung als erfolgreich erweisen, eröffnen sich Möglichkeiten zu hochpräzisen Protonenbehandlungen von Lungentumoren. Desweiteren könnten die vorgeschlagenen und entwickelten Annäherungen relativ einfach auf eine konventionelle Strahlentherapie übertragen werden.

Direct link to Lay Summary Last update: 24.06.2016

Responsible applicant and co-applicants

Employees

Project partner

Publications

Publication
Liver-ultrasound based motion modelling to estimate 4D dose distributions for lung tumours in scanned proton therapy
Giger Alina Tamara, Krieger Miriam, Jud Christoph, Duetschler Alisha, Salomir Rares, Bieri Oliver, Bauman Grzegorz, Nguyen Damien, Weber Damien Charles, Lomax Antony John, Zhang Ye, Cattin Philippe C (2020), Liver-ultrasound based motion modelling to estimate 4D dose distributions for lung tumours in scanned proton therapy, in Physics in Medicine & Biology, abaa26.
Anthropomorphic phantom for deformable lung and liver CT and MR imaging for radiotherapy
Colvill Emma, Krieger Miriam, Bosshard Patrick, Steinacher Patrice, Schnidrig Benno Andreas Rohrer, Parkel Thomas Claude, Stergiou Ioannis, Zhang Ye, Peroni Marta, Safai Sairos, Weber Damien Charles, Lomax Antony John, Fattori Giovanni (2020), Anthropomorphic phantom for deformable lung and liver CT and MR imaging for radiotherapy, in Physics in Medicine {&} Biology, 07NT02.
Impact of internal target volume definition for pencil beam scanned proton treatment planning in the presence of respiratory motion variability for lung cancer: A proof of concept
Krieger Miriam, Giger Alina, Salomir Rares, Bieri Oliver, Celicanin Zarko, Cattin Philippe C., Lomax Antony J., Weber Damien C., Zhang Ye (2020), Impact of internal target volume definition for pencil beam scanned proton treatment planning in the presence of respiratory motion variability for lung cancer: A proof of concept, in Radiotherapy and Oncology, 145, 154-161.
Accelerated Motion-Aware MR Imaging via Motion Prediction from K-Space Center
Jud Christoph, Nguyen Damien, Giger Alina, Sandkühler Robin, Krieger Miriam, Lomax Tony, Salomir Rares, Bieri Oliver, Cattin Philippe C. (2019), Accelerated Motion-Aware MR Imaging via Motion Prediction from K-Space Center, in arXiv , 1908.09560.
Inter-fractional Respiratory Motion Modelling from Abdominal Ultrasound: A Feasibility Study
Giger Alina, Jud Christoph, Nguyen Damien, Krieger Miriam, Zhang Ye, Lomax Antony J., Bieri Oliver, Salomir Rares, Cattin Philippe C. (2019), Inter-fractional Respiratory Motion Modelling from Abdominal Ultrasound: A Feasibility Study, in Predictive Intelligence in Medicine, 11-22, Springer International Publishing, Cham11-22.
The dependence of interplay effects on the field scan direction in PBS proton therapy
Fattori G, Klimpki G, Hrbacek J, Zhang Y, Krieger M, Placidi L, Psoroulas S, Weber D C, Lomax A J, Safai S (2019), The dependence of interplay effects on the field scan direction in PBS proton therapy, in Physics in Medicine {&} Biology, 64(9), 095005-095005.
Erratum: Ultrasound-driven 4D MRI (2018 Phys. Med. Biol. 63 145015)
Giger Alina, Stadelmann Marc, Preiswerk Frank, Jud Christoph, Luca Valeria De, Celicanin Zarko, Bieri Oliver, Salomir Rares, Cattin Philippe C (2018), Erratum: Ultrasound-driven 4D MRI (2018 Phys. Med. Biol. 63 145015), in Physics in Medicine {&} Biology, 63(17), 179601-179601.
Experimental validation of a deforming grid 4D dose calculation for PBS proton therapy
Krieger Miriam, Klimpki Grischa, Fattori Giovanni F, Hrbacek Jan, Oxley David, Safai Sairos, Weber Damien Charles, Lomax Antony John, Zhang Ye (2018), Experimental validation of a deforming grid 4D dose calculation for PBS proton therapy, in Physics in Medicine and Biology, 055005.
Motion Aware MR Imaging via Spatial Core Correspondence
Jud Christoph, Nguyen Damien, Sandkühler Robin, Giger Alina, Bieri Oliver, Cattin Philippe C. (2018), Motion Aware MR Imaging via Spatial Core Correspondence, in Medical Image Computing and Computer Assisted Intervention -- MICCAI 2018, 198-205, Springer International Publishing, Cham198-205.
Respiratory Motion Modelling Using cGANs
Giger Alina, Sandkühler Robin, Jud Christoph, Bauman Grzegorz, Bieri Oliver, Salomir Rares, Cattin Philippe C. (2018), Respiratory Motion Modelling Using cGANs, in Medical Image Computing and Computer Assisted Intervention -- MICCAI 2018, 81-88, Springer International Publishing, Cham81-88.
Ultrasound-driven 4D {MRI}
Giger Alina, Stadelmann Marc, Preiswerk Frank, Jud Christoph, Luca Valeria De, Celicanin Zarko, Bieri Oliver, Salomir Rares, Cattin Philippe C (2018), Ultrasound-driven 4D {MRI}, in Physics in Medicine {&} Biology, 63(14), 145015-145015.
A Localized Statistical Motion Model as a Reproducing Kernel for Non-rigid Image Registration
Jud Christoph, Giger Alina, Sandkühler Robin, Cattin Philippe C. (2017), A Localized Statistical Motion Model as a Reproducing Kernel for Non-rigid Image Registration, in Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017, 261-269, Springer International Publishing, Cham261-269.

Awards

Title Year
Journal of Clinical Medicine Travel Award 2020
The Rising star 2nd place, The International Conference on the Use of Computers in Radiation Therapy, Montreal, Canada 2019

Associated projects

Number Title Start Funding scheme
127549 Evaluation and Validation of Ultrasound for the Management of Organ Motion in Tumour Therapy 01.01.2010 Sinergia
178634 Transparent Moving Bodies on the Agora! 01.06.2018 Agora
143942 Innovative treatment of mobile targets at PSI 01.08.2013 Project funding (Div. I-III)
127549 Evaluation and Validation of Ultrasound for the Management of Organ Motion in Tumour Therapy 01.01.2010 Sinergia
182008 Development and Application of Rapid Conventional and Unconventional Quantitative Magnetic Resonance Imaging 01.05.2019 Project funding (Div. I-III)
173303 Radiomics as biomarker in multi-modality treatment of locally advanced non-small cell lung cancer 01.08.2017 Project funding (Div. I-III)

Abstract

In comparison to conventional therapy, Pencil Beam Scanned (PBS) proton therapy has the ability to significantly reduce doses to surrounding normal tissue. This is particularly important for treatments of lesions in the thorax, where it is necessary to keep the doses that the volumes of the lungs and heart receive as low as possible. Thus, PBS proton therapy could have significant advantages for the treatment of lung tumours. Indeed, it could eventually be the proton treatment of choice for mobile tumours, due to the relative ease with which it can be adapted for tumour tracking. With tracking, the delivered beams are ‘steered’ to follow tumour motion ensuring the best combination of target coverage and dose conformation in the presence of motion. Successful tracking, however, requires accurate methods for determining tumour position and motion in real-time. As such, ultrasound (US) and optical surface imaging are interesting modalities, as they are non-invasive and are associated with no additional radiation dose to the patient. Unfortunately, neither can be used to image lung tumours directly. However, US can be used to acquire real-time images of structures in the upper abdomen, such as the diaphragm and liver, whereas surface imaging can track chest and abdominal wall motions, all of which can act as surrogates of lung motion. It is the aim of this project to develop the methods by which ultrasound and/or surface imaging of the upper abdomen can be used to predict three-dimensional motions in the lung with an accuracy of 2-3mm. To achieve such accuracy, we propose to use both ultrasonic monitoring of the diaphragm/liver and surface motions as inputs to a patient specific, statistical model of lung motion. To build this model, simultaneous US and 3D-time resolved MRI (4DMRI) acquisitions will be acquired of volunteers and lung patients using MR compatible ultrasound probes and 4DMRI sequences. In contrast, as surface imaging devices are not MRI compatible, surface motions will be estimated by extracting these indirectly from the 4DMRI data sets. The accuracy of the developed models will be validated using a sophisticated 4D anthropomorphic phantom and through extensive simulations of PBS proton treatments using previously developed approaches based on 4D dose calculations. Should this approach prove successful, it could open the door to highly conformal proton treatments of lung tumours. Moreover, the proposed conceptual approach could be easily transferred to conventional radiotherapy.
-