Back to overview

Die neuronalen Grundlagen des absoluten Gehörs und der Ton-Farbsynästhesie: Zwei Seiten einer Medaille?

English title The neural foundation of absolute pitch and tone color synesthesia: two sides of one coin?
Applicant Jäncke Lutz
Number 163149
Funding scheme Project funding (Div. I-III)
Research institution Lehrstuhl für Neuropsychologie Psychologisches Institut Universität Zürich
Institution of higher education University of Zurich - ZH
Main discipline Neurophysiology and Brain Research
Start/End 01.11.2015 - 31.07.2020
Approved amount 676'843.00
Show all

All Disciplines (2)

Neurophysiology and Brain Research

Keywords (8)

Ton-Färb-Synästhesie; Hirnplastizität; Musik; Auditorische Informationsverarbeitung; funktionelle Magnetresonanztomographie; Absolutes Gehör; strukturelle Magnetresonanztomographie; EEG

Lay Summary (German)

Kit diesel Project sell überprüft werden, ob Ton-Färb-Synästheten und Absoluthörer unterschiedliche anatomische und /oder funktionelle Netzwerke nutzen, um Musik zu verarbeiten.
Lay summary

Es ist bekannt, dass Absoluthörer (Menschen, die einen Ton ohne Bezug zu einem Referenzton erkennen und kategorisieren können) und Ton-Farb-Synästheten über spezielle anatomische Netzwerke verfügen. Unbekannt ist allerdings wie sie auf der Basis der besonderen anatomischen Netzwerke beim Hören von Musik diese Netzwerke nutzen. Genau dies soll in diesem Projekt näher untersucht werden. Ziel ist es untersuchen, wie sich die funktionellen Netzwerke bei diesen beiden Versuchspersonengruppen im Verlauf des Hörens von Musikstücken (im Vergleich zu Kontrollbedingungen) entfalten. Unsere Hypothese ist, dass bei Ton-Farb-Synästheten sich eine globale und konstant bleibende Netzwerkarchitektur offenbart, die weit über den perisylvischen Hirnbereich hinausreicht. Bei Absoluthörern dagegen erwarten wir ein lokal beschränktes funktionales Netzwerk vor allem im perisylvischen Hirngebiet. Für die Messung der funktionellen Netzwerke werden wir Multi-Kanal-EEG-Ableitungen durchführen und anhand dieser EEGs auf die intrakortikalen Quellen schliessen. Mit diesen intrakortikalen Quellen beabsichtigen wir dann verschiedene Netzwerkmodelle zu berechnen. Am Ende des Projektes werden dann noch anatomische Studien durchgeführt, um die anatomischen Besonderheiten dieser beiden Versuchsgruppen näher herauszuarbeiten.


Direct link to Lay Summary Last update: 27.10.2015

Responsible applicant and co-applicants


Associated projects

Number Title Start Funding scheme
187704 Linking large-scale brain networks underlying altered auditory perception to social deficits in autism spectrum disorder 01.01.2020 Early Postdoc.Mobility
138668 Musikexpertise und Sprachfunktionen: Ein neurowissenschaftlicher Zugang 01.02.2012 Project funding (Div. I-III)


Background: Absolute pitch and colored hearing synesthesia are specific hearing variants, which can be found quite frequently in the musician population. Absolute pitch and colored hearing synesthesia are above-normal perceptual experiences that have much in common. Both phenomena refer to the specific tendency to perceive one-to-one mappings between sensory stimuli (here tones) and perceptual or conceptual categories. Both are rare conditions that have uneven distributions in the population, and both are sensitive to genetic and environmental or experiential factors. Finally, a significant proportion of synesthetes also report having absolute pitch and vice versa, suggesting an association between the two phenomena. A basic hypothesis of this project proposal is that absolute pitch and colored hearing synesthesia are explained by partially shared neural mechanisms. An overarching model that ties together the two enhanced perceptual phenomena would powerful both for our theoretical understanding of perception and its neural correlates, and for the increased availability of empirical data on hand to address each phenomenon. The aim of this study is to test whether and to what extent colored hearing synesthetes use similar neural mechanisms as absolute pitch possessors relative to controls (relative pitch musicians and non-musicians) during music listening and basic auditory processing.Working hypothesis: Absolute pitch possessors and colored hearing synesthetes represent specific variants of auditory perception and cognitive processing. Both hearing variants are associated with particular underlying anatomical features and neurophysiological processes. Absolute possessors and colored hearing synesthetes demonstrate shared anatomical and neurophysiological features. In addition because of the considerable variation within the groups of absolute pitch possessors and colored hearing synesthetes there will also specific within and between group differences. Thus, there will be gradual similarities and differences both within and between these groups depending on the particular level of absolute pitch ability and colored hearing synesthesia. Specific aims: This project comprises two parts. Part 1 will focus on the functional and anatomical network architecture in absolute pitch possessors and colored hearing synesthetes. Functional network features for these groups will be examined during rest and during auditory stimulation. Anatomical network features of these subjects groups will be examined using t1-weighted anatomical measures as well as diffusion tensor imaging measures. All networks (functional and anatomical) will be modeled using graph-theoretical approaches. A major aim is to examine correspondences and differences between the functional and anatomical networks within and between the different subject groups. Part 2 of this project focuses on the underlying neural and cognitive processes of absolute ability and colored hearing synesthesia. Here we will examine how tones are processed under different perceptual and cognitive conditions.Specific aims and experimental designs: In part 1 of this project we will model functional and anatomical networks using graph theoretical techniques. For the functional network analyses we will use different experimental conditions comprising “resting states” as well as music and tone stimulation. For the functional analyses we will rely entirely on high-density EEG data and on the intra-cerebral sources estimated on the basis of the topographical distribution of the electrical fields. Intra-cortical coherences will be estimated using different coherence measures (instantaneous and lagged phase coherence) between all Brodmann areas of both hemispheres. For the anatomical network we will use t1-weighted and DTI measures to estimate structural connectivities. In part 2 it is planned to used tone-labeling, tone-memory, tone Go-NoGo, and absolute pitch aversion paradigms in the context of high-density EEG measurements. A particular emphasis is placed on the collection and examination of a large sample of absolute pitch possessors and colored hearing synesthetes. The reason for this is that we plan to work with subgroups from which we anticipate that they will substantially differ in terms of structural and functional network features but also in terms of the involved neurophysiological processes during tone-labeling, tone-memory, tone Go-NoGo, and absolute pitch aversion paradigms. It is also worth to mention that most of the previous neuroscience studies examining these interesting subgroups of subjects relied on relatively small sizes. Thus this project will help to disentangle individual differences as well as core neurophysiological and neuroanatomical features of these subject groups. For the functional experiments we explicitly plan to work with high-density EEG to measure cortical activations on a millisecond basis. A further most important aspect of high-density EEG recording is the fact that auditory processes can be studied without any distracting MRI scanner noise, which is a particular problem for the subgroups we are planning to work with.Expected value of the proposed project: This project will be important for the understanding of the neural underpinnings of specific variants of hearing abilities. But this project will also provide new insights into the functional and neuroanatomical architecture of the auditory system and how it can be linked to neural networks outside the perisylvian brain.