Back to overview

Electric field induced on-demand trapping and combining of matter in nanofluidic channels with single nanoparticle resolution

English title Electric field induced on-demand trapping and combining of matter in nanofluidic channels with single nanoparticle resolution
Applicant Poulikakos Dimos
Number 162855
Funding scheme Project funding (Div. I-III)
Research institution Institut für Energietechnik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Mechanical Engineering
Start/End 01.02.2016 - 31.10.2019
Approved amount 420'567.00
Show all

Keywords (3)

nanoparticle manipulation; nanofluidics; nanoparticle trapping

Lay Summary (German)

Nanoscalegeräte für die Handlung von individuellen Nanopartikeln synthetischer Art oder biologischen Nanopartikel Viren mit weitgehenden Anwendungen von der Biologie und Medizin zur Pharmaindustrie.
Lay summary

Wir werden neuartige Konzepte zum Führen, Fangen und Freilassen von Nanoentitäten innerhalb eines nanofluidischen Kanals oder beim Übergang kommunizierender Nanokanäle untersuchen. Die „On-Demand“ Manipulation wird durch Anlegung einer externer Steuerspannungen an vordefinierten Stellen ermöglicht. Dadurch wird das elektrische Potential und das elektrische Feld innerhalb des Nanokanals verändert. Wir werden allerneueste optische Messtechniken und High-End Geräte einsetzen, um gleichzeitig hohe Sensitivität, hohe räumliche Lokalisierung und eine sehr schnelle Bildgebung zu erreichen. Das Funktionsprinzip der Manipulation (Fangen, Freilassen und Führen) von einzelnen oder Kombinationen von wechselwirkenden Partikeln wird an metallischen und dielektrischen Nanopartikeln demonstriert und bewiesen. Die Partikelmanipulation in Lösungen mit hoher Salzkonzentration wird ebenfalls untersucht, da dies von hoher Relevanz für biologische Experimente ist. Das Gesamtziel der Arbeit ist, den existierenden Stand der Wissenschaft im Fangen, Freilassen und Führen von individuellen nanoskopischen Entitäten signifikant voranzutreiben und eine neue Ära im Bereich kontrolliert manipulierbarer Einzelentitäten oder auch Kombinationen mehrerer Entitäten zu beschreiten. Dies wird das gezielte Studium der Wechselwirkungen zwischen Paaren einzelner Nanoentitäten und das Durchführen von Grundlagenstudien wie zum Beispiel biologische relevante Experimente auf Einzelspezies Niveau ermöglichen. Daraus kann die zukünftige Forschung in diversen Gebieten wie zum Beispiel der Optik, der molekularen Biologie und der Arzneimittelforschung signifikanten Nutzen ziehen.

Direct link to Lay Summary Last update: 08.01.2016

Responsible applicant and co-applicants



Single entity resolution valving of nanoscopic species in liquids
Eberle Patric, Höller Christian, Müller Philipp, Suomalainen Maarit, Greber Urs F., Eghlidi Hadi, Poulikakos Dimos (2018), Single entity resolution valving of nanoscopic species in liquids, in Nature Nanotechnology, 13(7), 578-582.

Communication with the public

Communication Title Media Place Year
New media (web, blogs, podcasts, news feeds etc.) Valves for tiny particles ETH Life German-speaking Switzerland International 2018

Associated projects

Number Title Start Funding scheme
170724 Initiated chemical vapor deposition (iCVD) system for rational and durable surface functionalization 01.01.2017 R'EQUIP


Individual manipulation (guiding/trapping/releasing) of ultra small objects, ranging from nanoparticles down to molecules and atoms, significantly benefits many fields such as molecular biology, chemistry, bio-physics, optics, and opto-fluidics. Although recent reports have shown some applications such as manipulation, separation and alignment of nano-objects, the flexibility and versatility, which are already demonstrated for manipulating micron-size entities of matter in the field of microfluidics are largely missing in the domain of objects with the nanoscopic dimensions. There are several additional challenges to be overcome at the nanoscale: In contrast to micron-size objects, the inherent Brownian motion of nano-objects in a liquid becomes significant as compared to their sizes. Therefore, an anti-brownian force needs to be exerted on the objects to control them. In addition, due to physical constraints at the nanoscale, microfluidic concepts such as pressure-driven transport, and components like micromechanical valves and fluid multiplexers, which have largely enabled microfluidic integrated circuits, cannot be readily imported to nanoscale fluidics and needed optical diagnostics are significantly more complex going well beyond standard optical microscopy. The existing approaches, such as dielectrophoresis, electrostatic trapping, and optical manipulation of nano-objects, are often very limited in their applicability and/or lack enough controllability. In the current proposal, we aim at employing our combined expertise in transport phenomena, nanofabrication and high precision optical imaging to markedly advance the state-of-the-art in on-demand manipulation of nanoscale entities and demonstrate a concept, which will be compact and compatible with continuous (v.s. batch) lab-on-chip processes, will provide versatility (e.g. in particle material and size and liquid type) and flexibility and will allow the controlled combination of single particle entities. The science base that will be pieced together with the proposed research consists of three sequential parts:1.We propose to investigate novel concepts to guide, trap and release nanoentities, within a nanofluidic channel, or at the intersection between communicating nanochannels. The on-demand manipulation will become possible by applying an externally-controlled voltage at predetermined locations, which will alter the potential and electric field distributions within the nanochannels. To thoroughly investigate the intertwined physical effects in such a system we will follow a sequential process by advancing the design in a series of steps, each adding an important functionality. We will estimate the capabilities and limitations of each concept by numerical simulations and will realize them using existing clean room nanofabrication techniques. 2.The capabilities of the fabricated devices will be tested with an optical set-up tailored to the specifics of the work. We will employ cutting edge optical techniques and high-end devices to simultaneously achieve high sensitivity, high spatial localization and very fast imaging. The proof-of-principle of manipulation (trapping, releasing and guiding) of single and combinations of interacting particles will be performed for metallic and dielectric nanoparticles. Particle manipulation at high salt concentration, which is relevant for many biological experiments, will also be investigated.3.To demonstrate the great versatility of the concept, we will use the setup for a host of applications. To this end, we will explore trapping and releasing of single lipid vesicles and viruses, and in-situ attaching viruses to lipid vesicles inside a trap. This will demonstrate the exceptional capability of the system in simultaneous handling of two particles with direct relevance to biological applications. Other capabilities of the proposed concept in applications such as in-situ attaching single quantum dots to single particles (which is of interest in quantum optics and fluorescence imaging) and particle sorting will also be demonstrated.The overall goal of the proposal is to significantly advance the existing capabilities in trapping, releasing and guiding individual nanoscopic particles and enter an entirely new area of controllably manipulating combinations of single entities at will. This will enable studying controlled interaction of such pairs of nanoentities and performing fundamental studies such as biologically relevant experiments at the level of single species. In addition, the concept introduced in this proposal, will constitute a fundamental building block for future large scale integrated nanofluidic devices and will significantly benefit future research in a variety of areas such as optics, molecular biology and drug discovery.